000860146 001__ 860146
000860146 005__ 20240711101552.0
000860146 0247_ $$2doi$$a10.3390/en12030350
000860146 0247_ $$2Handle$$a2128/21449
000860146 0247_ $$2WOS$$aWOS:000460666200018
000860146 037__ $$aFZJ-2019-00932
000860146 082__ $$a620
000860146 1001_ $$0P:(DE-Juel1)168373$$aPanchenko, Olha$$b0$$eCorresponding author$$ufzj
000860146 245__ $$aInfluence of Stoichiometry on the Two-Phase Flow Behavior of Proton Exchange Membrane Electrolyzers
000860146 260__ $$aBasel$$bMDPI$$c2019
000860146 3367_ $$2DRIVER$$aarticle
000860146 3367_ $$2DataCite$$aOutput Types/Journal article
000860146 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1567772097_16307
000860146 3367_ $$2BibTeX$$aARTICLE
000860146 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860146 3367_ $$00$$2EndNote$$aJournal Article
000860146 520__ $$aIn order for electrolysis cells to operate optimally, mass transport must be improved. The key initial component for optimal operation is the current collector, which is also essential for mass transport. Water as an educt of the reaction must be evenly distributed by the current collector to the membrane electrode assembly. As products of the reaction, hydrogen and oxygen must also be directed quickly and efficiently through the current collector into the channel and removed from the cell. The second key component is the stoichiometry, which includes the current density and water volume flow rate and represents the ratio between the water supplied and water consumed. This study presents the correlation of the stoichiometry, two-phase flow in the channel and gas fraction in the porous transport layer for the first time. The gas-water ratio in the channel and porous transport layer during cell operation with various stoichiometries was investigated by means of a model in the form of an ex situ cell without electrochemical processes. Bubble formation in the channel was observed using a transparent cell. The gas-water exchange in the porous transport layer was then investigated using neutron radiography.
000860146 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000860146 588__ $$aDataset connected to CrossRef
000860146 7001_ $$0P:(DE-Juel1)173862$$aGiesenberg, Lennard$$b1
000860146 7001_ $$0P:(DE-Juel1)165158$$aBorgardt, Elena$$b2$$ufzj
000860146 7001_ $$0P:(DE-Juel1)129951$$aZwaygardt, Walter$$b3$$ufzj
000860146 7001_ $$0P:(DE-HGF)0$$aKardjilov, Nikolay$$b4
000860146 7001_ $$0P:(DE-HGF)0$$aMarkötter, Henning$$b5
000860146 7001_ $$0P:(DE-HGF)0$$aArlt, Tobias$$b6
000860146 7001_ $$0P:(DE-HGF)0$$aManke, Ingo$$b7
000860146 7001_ $$0P:(DE-Juel1)129892$$aMüller, Martin$$b8$$ufzj
000860146 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b9$$ufzj
000860146 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b10$$ufzj
000860146 773__ $$0PERI:(DE-600)2437446-5$$a10.3390/en12030350$$gVol. 12, no. 3, p. 350 -$$n3$$p350 -$$tEnergies$$v12$$x1996-1073$$y2019
000860146 8564_ $$uhttps://juser.fz-juelich.de/record/860146/files/Invoice_MDPI_energies-415312.pdf
000860146 8564_ $$uhttps://juser.fz-juelich.de/record/860146/files/energies-12-00350-v2.pdf$$yOpenAccess
000860146 8564_ $$uhttps://juser.fz-juelich.de/record/860146/files/energies-12-00350-v2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000860146 8564_ $$uhttps://juser.fz-juelich.de/record/860146/files/Invoice_MDPI_energies-415312.pdf?subformat=pdfa$$xpdfa
000860146 8767_ $$8energies-415312$$92019-01-19$$d2019-01-21$$eAPC$$jZahlung erfolgt$$zFZJ-2019-00571
000860146 909CO $$ooai:juser.fz-juelich.de:860146$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000860146 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168373$$aForschungszentrum Jülich$$b0$$kFZJ
000860146 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165158$$aForschungszentrum Jülich$$b2$$kFZJ
000860146 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129951$$aForschungszentrum Jülich$$b3$$kFZJ
000860146 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129892$$aForschungszentrum Jülich$$b8$$kFZJ
000860146 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b9$$kFZJ
000860146 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129883$$aRWTH Aachen$$b9$$kRWTH
000860146 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b10$$kFZJ
000860146 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b10$$kRWTH
000860146 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000860146 9141_ $$y2019
000860146 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860146 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000860146 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000860146 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860146 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGIES : 2017
000860146 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000860146 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000860146 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860146 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860146 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000860146 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000860146 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860146 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860146 920__ $$lyes
000860146 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000860146 9801_ $$aAPC
000860146 9801_ $$aFullTexts
000860146 980__ $$ajournal
000860146 980__ $$aVDB
000860146 980__ $$aI:(DE-Juel1)IEK-3-20101013
000860146 980__ $$aAPC
000860146 980__ $$aUNRESTRICTED
000860146 981__ $$aI:(DE-Juel1)ICE-2-20101013