IBM POWER9 Processor, NVIDIA V100 GPU and IBM AC922 Node Hardware Architecture SC18 Tutorial

12.11.2018 | Dirk Pleiter, Forschungszentrum Jülich/JSC & University of Regensburg

Goals for Today

- Obtain knowledge about the AC922 heterogeneous server platform including it's
 - IBM POWER9 processor
 - NVIDIA V100 processor
- Obtain skills to analyse application for attainable performance
- Learn and practice measuring performance
- Learn and exercise how to optimise a simple application on IBM POWER9 processors and NVIDIA V100 GPUs
- Learn and practice parallelisation on multiple GPUs
- Study best practices for porting scientific applications

Overview of the Tutorial

Lecture	IBM POWER9 processor, NVIDIA V100 GPU and IBM AC922 node hardware architecture
Lecture +	Performance counters and tools
hands-on	
Lecture +	Optimization on POWER9
hands-on	
Lecture +	V100 GPU programming and optimization
hands-on	Multi-GPU programming
Lecture	Best practices for porting scientific applications

A. Herten

T. Papatheodore

D. Pleiter

A. Ravindar

M. Wagner

Overview of this Lecture

- Introduction
- IBM POWER9 Processor
- NVIDIA V100 GPU
- IBM AC922 Platform
- Use Case
- Summary

Part I: Introduction

AC922 Server: Overview

[IBM Redbook, 2018]

OpenPOWER for HPC

JURON @ JSC 18 Minsky nodes 0.35 PFlop/s

D.A.V.I.D.E @ CINECA 45 Minsky nodes 0.9 PFlop/s

SUMMIT @ ORNL 4608 AC922 nodes 188 PFlop/s

Information Exchange Function

- A computation implies that information is transferred from a storage device x to a storage device y.
- Information Exchange Function:

```
J_{x,y}^{k}(W) = data transferred between computer subsystems for specific computation k
```

```
x ... source storage device (e.g. memory)
```

y ... destination storage device (e.g. register file)

W ... problem size/work-load

Bandwidth-Latency Performance Model

Ansatz to predict latency:

$$\Delta t_{x,y}^k \simeq \lambda_{x,y} + I_{x,y}^k/\beta_{x,y}$$

Examples:

- Throughput of arithmetic operations
 - x, y = R
 - $\beta_{R,R}$ = throughput arithmetic unit
 - $I_{R,R}^k$ = number of operations
- Load of data
 - x = M, y = R
 - $\beta_{M,R}$ = memory bandwidth
 - $I_{\rm M,R}^{k}$ = amount of data

arithmetic unit

register file

register file

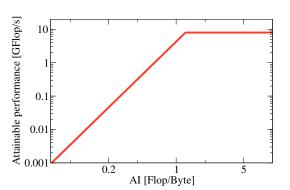
memory bus

Slide 7

memory

Balanced Architecture

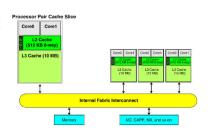
- Assume perfect overlap of computation and data transport
- Condition for balanced architecture


- Unbalanced cases
 - AI $< \beta_{\rm fp}/\beta_{\rm mem} \Rightarrow$ memory bandwidth limited
 - AI $> \beta_{\rm fp}/\beta_{\rm mem} \Rightarrow$ compute performance limited

Roofline Model

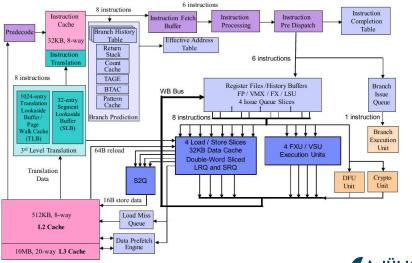
Attainable performance

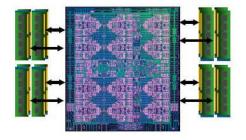
$$b_{ ext{fp}} < rac{ extsf{\emph{I}}_{ ext{fp}}}{\mathsf{max}(\Delta extsf{\emph{t}}_{ ext{fp}}, \Delta extsf{\emph{t}}_{ ext{mem}})} \simeq \mathsf{min}(eta_{ ext{fp}}, \mathrm{AI} \cdot eta_{ ext{mem}})$$


Part II: IBM POWER9 Processor

POWER9 Overview

- Introduced in 2017 using 14nm technology
- POWER v3.0B ISA
- Up to 24 cores, frequency up to 4 GHz
 - 4 threads per core in SMT4 configuration


- Core performance figures
 - Double precision floating-point arithmetics:
 - $2 \cdot 2 \text{ FMA/cycle} = 8 \text{ Flop/cycle}$
 - Load from L1:
 - 2 · 16 Byte/cycle
 - Store to L1:
 - 1 · 16 Byte/cycle


POWER9 Micro-Architecture

[IBM, 2018]

POWER9 Memory Subsystem

[IBM, 2018]

Directly attached memory:

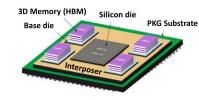
- 8 DDR4 channels
- Up to 2.667 GT/s or up to 170 GByte/s/socket

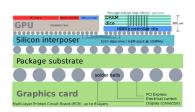
POWER9 Memory Hierarchy

- Cache line size = 128 Byte
- L1 data cache
 - 64 kByte, 8-way set associative
 - Write update policy: store-through
 - Core private
- L2 data cache
 - 512 kByte, 8-way set associative, dual-banked
 - Fully inclusive of the L1 cache
 - Shared by 2 cores
- L3 data cache
 - 10 MByte region per 2-core slice, 20-way set associative
 - Victim for local L2 or other L3 caches, not inclusive of the L2 cache
 - Accessible from other cores

Part III: NVIDIA V100 GPU

Volta Architecture Overview

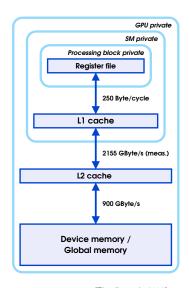

- Introduced in 2017 using 12 nm
- Up to 80 Streaming Multiprocessors (SM)
- SM performance figures
 - 32 FP64 CUDA "cores"
 - 64 Flop/cycle



V100 Memory Subsystem

- In-package HBM2 memory
- 4 memory stacks,4-8 GByte/stack
- Very wide bus (2 · 512 bit) and relative low data rate (1.75 GT/s)
- Aggregate bandwidth: 900 GByte/s

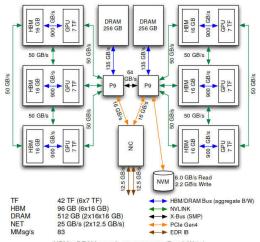
[H. Jun (SK Hynix), 2013]



[Wikipedia]

V100 Memory Hierarchy

- Register file
 - Size: 256 kiByte/SM or 64 kByte/processing block
- L1 data cache and shared memory
 - Size 128 kiByte/SM or 10 MiByte/GPU
 - L1 hit latency 28 cycle (measured)
- L2 cache
 - 6 MiByte/GPU
 - L2 hit latency 193 cycle (measured)



Part IV: AC922 Nodes

AC922 Server: Details

HBM & DRAM speeds are aggregate (Read+Write). All other speeds (X-Bus, NVLink, PCIe, IB) are bi-directional.

Comparison POWER9 vs. V100 on AC922

	POWER9	V100
Number of cores/SMs	≥ 16	80
Double-precision Flop/cycle	≥ 128	5,120
Clock frequency [GHz]	3.8	1.312
Double-precision TFlop/s	≥ 0.5	6.7
Memory bandwidth read+write [GByte/s]	135	900
Balance [Flop/Byte]	≥ 3.7	7.5
Number of CPU or GPU	2	6
Aggregate double-precision TFlop/s	0.97	40.3
Aggregate memory bandwidth [TByte/s]	0.27	5.4
Aggregate memory capacity [GByte]	512	96

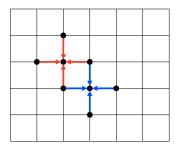
Part V: Use Case

The Poisson Equation

Poisson equation in 2 dimensions:

$$-\frac{\partial^2 v(x,y)}{\partial x^2} - \frac{\partial^2 v(x,y)}{\partial y^2} = f(x,y)$$

Discretisation of 2nd-order derivative


$$-\frac{\partial^2 v(x,y)}{\partial x^2} \leftarrow \frac{2v_{i,j} - v_{i-1,j} - v_{i+1,j}}{h^2}$$

Discrete Poisson equaiton in 2 dimensions:

$$T v = h^2 f$$
 where $T = \begin{pmatrix} 4 & -1 & 0 & \cdots \\ -1 & 4 & -1 & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}$

Discrete Poisson Equation: Data Locality

Graphical representation of T v:

Observations:

- Matrix T acts as a stencil operator
- Any element of vector v is reused 4 times

Jacobi Algorithm

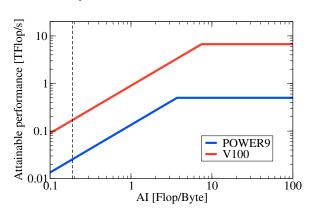
- Algorithm suitable for diagonally dominant systems
- Matrix decomposition: T = D + R

$$D = \begin{pmatrix} t_{0,0} & 0 & 0 & \cdots \\ 0 & t_{1,1} & 0 & \cdots \\ \vdots & \vdots & \ddots & \end{pmatrix}, \quad R = \begin{pmatrix} 0 & t_{0,1} & t_{0,2} & \cdots \\ t_{1,0} & 0 & t_{1,2} & \cdots \\ \vdots & \vdots & \ddots & \end{pmatrix}$$

Obtain solution through iterative precedure

$$v^{(k+1)} = D^{-1} (h^2 f - R v^{(k)})$$

Jacobi Algorithm Implementation


Information exchange analysis assuming small cache:

- Load of Anew, rhs, Aref: $I_{\rm ld} = n_x \cdot n_y \cdot 3 \cdot 8$ Byte
- Store Anew: $I_{\rm st} = n_x \cdot n_y \cdot 1 \cdot 8 \, {\rm Byte}$
- Floating-point arithmetics: $I_{fp} = n_x \cdot n_y \cdot 6 \operatorname{Flop}$

Jacobi on POWER9/V100: Roofline Analysis

$$\mathrm{AI} = I_{\mathrm{fp}}/(I_{\mathrm{ld}} + I_{\mathrm{st}}) = 0.19 \ \mathrm{Flop/Byte}$$

Part VI: Summary

Summary

- Approach for systematic performance analysis and modelling based on Information Exchange introduced
- Discussed the AC922 node architecture as a building block for supercomputers based on
 - POWER9 processors
 - V100 GPUs
- Introduced use case for today: Solving 2-dimensional Poisson equation using Jacobi solver
 - Memory bandwidth limited application
 - Roofline model defines upper performance limit

