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Goals for Today

Obtain knowledge about the AC922 heterogeneous server
platform including it’s

IBM POWER9 processor

NVIDIA V100 processor

Obtain skills to analyse application for attainable

performance

Learn and practice measuring performance

Learn and exercise how to optimise a simple application on

IBM POWER9 processors and NVIDIA V100 GPUs

Learn and practice parallelisation on multiple GPUs

Study best practices for porting scientific applications
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Overview of this Lecture

Introduction

IBM POWER9 Processor

NVIDIA V100 GPU

IBM AC922 Platform

Use Case

Summary
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Part I: Introduction
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AC922 Server: Overview
[IBM Redbook, 2018]

processors
POWER9

V100 GPUs
Memory
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OpenPOWER for HPC

JURON @ JSC

18 Minsky nodes

0.35 PFlop/s

⇓

D.A.V.I.D.E @ CINECA

45 Minsky nodes

0.9 PFlop/s

⇓

SUMMIT @ ORNL

4608 AC922 nodes

188 PFlop/s
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Information Exchange Function

A computation implies that information is transferred from a

storage device x to a storage device y .

Information Exchange Function:

Ik
x ,y(W ) = data transferred between computer sub-

systems for specific computation k

x ... source storage device (e.g. memory)

y ... destination storage device (e.g. register file)

W ... problem size/work-load
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Bandwidth-Latency Performance Model

Ansatz to predict latency:

∆tk
x ,y ≃ λx ,y + Ik

x ,y/βx ,y

Examples:

Throughput of arithmetic operations

x , y = R

βR,R = throughput arithmetic unit

Ik
R,R = number of operations

Load of data

x = M, y = R

βM,R = memory bandwidth

Ik
M,R = amount of data

R register file

arithmetic unit

R

M

memory bus

memory

register file
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Balanced Architecture

Assume perfect overlap of computation and data transport

Condition for balanced architecture

∆tfp ≃ ∆tmem

⇓

Ifp

βfp

≃
Imem

βmem

⇓

βfp

βmem

≃
Ifp

Imem

= AI Arithmetic Intensity

Unbalanced cases
AI < βfp/βmem ⇒ memory bandwidth limited

AI > βfp/βmem ⇒ compute performance limited
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Roofline Model

Attainable performance

bfp <
Ifp

max(∆tfp,∆tmem)
≃ min(βfp,AI · βmem)
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Part II: IBM POWER9 Processor
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POWER9 Micro-Architecture

[IBM, 2018]
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POWER9 Memory Subsystem

[IBM, 2018]

Directly attached memory:

8 DDR4 channels

Up to 2.667 GT/s or up to 170 GByte/s/socket
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POWER9 Memory Hierarchy

Cache line size = 128 Byte
L1 data cache

64 kByte, 8-way set associative

Write update policy: store-through

Core private

L2 data cache
512 kByte, 8-way set associative, dual-banked

Fully inclusive of the L1 cache

Shared by 2 cores

L3 data cache
10 MByte region per 2-core slice, 20-way set associative

Victim for local L2 or other L3 caches, not inclusive of the L2

cache

Accessible from other cores
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Part III: NVIDIA V100 GPU
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V100 Memory Hierarchy

Register file

Size: 256 kiByte/SM or

64 kByte/processing block

L1 data cache and shared
memory

Size 128 kiByte/SM or

10 MiByte/GPU

L1 hit latency 28 cycle

(measured)

L2 cache

6 MiByte/GPU

L2 hit latency 193 cycle

(measured)

900 GByte/s

2155 GByte/s (meas.)

250 Byte/cycle

Register file

L1 cache

L2 cache

Global memory

Device memory /

GPU private

SM private

Processing block private

[Zhe Jia et al., 2018]

Member of the Helmholtz Association 12.11.2018 Slide 16



Part IV: AC922 Nodes
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AC922 Server: Details
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Comparison POWER9 vs. V100 on AC922

POWER9 V100

Number of cores/SMs ≥ 16 80

Double-precision Flop/cycle ≥ 128 5,120

Clock frequency [GHz] 3.8 1.312

Double-precision TFlop/s ≥ 0.5 6.7

Memory bandwidth read+write [GByte/s] 135 900

Balance [Flop/Byte] ≥ 3.7 7.5

Number of CPU or GPU 2 6

Aggregate double-precision TFlop/s 0.97 40.3

Aggregate memory bandwidth [TByte/s] 0.27 5.4

Aggregate memory capacity [GByte] 512 96
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Part V: Use Case
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The Poisson Equation

Poisson equation in 2 dimensions:

−
∂2v(x , y)

∂x2
−

∂2v(x , y)

∂y2
= f (x , y)

Discretisation of 2nd-order derivative

−
∂2v(x , y)

∂x2
←

2vi,j − vi−1,j − vi+1,j

h2

Discrete Poisson equaiton in 2 dimensions:

T v = h2 f where T =







4 −1 0 · · ·

−1 4 −1 · · ·
...

...
. . .






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Discrete Poisson Equation: Data Locality

Graphical representation of T v :

Observations:

Matrix T acts as a stencil operator

Any element of vector v is reused 4 times
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Jacobi Algorithm

Algorithm suitable for diagonally dominant systems

Matrix decomposition: T = D + R

D =







t0,0 0 0 · · ·

0 t1,1 0 · · ·
...

...
. . .






, R =







0 t0,1 t0,2 · · ·

t1,0 0 t1,2 · · ·
...

...
. . .







Obtain solution through iterative precedure

v (k+1) = D−1
(

h2 f − R v (k)
)
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Jacobi Algorithm Implementation

for ( i n t i y = 1 ; i y < ny−1; i y ++)
{

for ( i n t i x = 1 ; i x < nx−1; i x ++ )
{

Anew [ i y ∗nx+ i x ] = −0.25 ∗ ( rhs [ i y ∗nx+ i x ]
− ( Aref [ i y ∗nx + i x +1] + Aref [ i y ∗nx + ix −1] +

Aref [ ( i y −1)∗nx + i x ] + Aref [ ( i y +1)∗nx + i x ] ) ) ;
e r r o r = fmaxr ( e r ro r , f abs r (Anew [ i y ∗nx+ i x ]−Aref [ i y ∗nx+ i x ] ) ) ;

}
}

Information exchange analysis assuming small cache:

Load of Anew, rhs, Aref: Ild = nx · ny · 3 · 8Byte

Store Anew: Ist = nx · ny · 1 · 8Byte

Floating-point arithmetics: Ifp = nx · ny · 6Flop
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Jacobi on POWER9/V100: Roofline Analysis

AI = Ifp/(Ild + Ist) = 0.19 Flop/Byte
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Part VI: Summary
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Summary

Approach for systematic performance analysis and

modelling based on Information Exchange introduced

Discussed the AC922 node architecture as a building block
for supercomputers based on

POWER9 processors

V100 GPUs

Introduced use case for today: Solving 2-dimensional
Poisson equation using Jacobi solver

Memory bandwidth limited application

Roofline model defines upper performance limit
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