PERFORMANCE COUNTERS AND TOOLS
OPENPOWER TUTORIAL, SC18, DALLAS

12 November 2018 | Andreas Herten | Forschungszentrum Jiilich

@) JULICH | u=
SUPERCOMPUTING
Forschungszentru

m | CENTRE

Member of the Helmholtz Association

Outline

Goals of this session
= Get to know Performance Counters
= Measure counters on POWER9
— Hands-on
= Additional material in appendix

Member of the Helmholtz Association 12 November 2018

Motivation
Performance Counters
Introduction
General Description
Counters on POWER9
Measuring Counters
perf
PAPI
GPUs
Conclusion

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Slide 1118 J Forschungszentrum

Knuth

[...] premature optimization is the root of all evil.

- Donald Knuth

Knuth

[...] premature optimization is the root of all evil.
Yet we should not pass up our [optimization] op-
portunities [...]

- Donald Knuth

Optimization C Measurement

Making educated decisions

= Only optimize code after measuring its performance

Measuring

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 12 November 2018 Slide 3118 Forschungszentrum CENTRE

Optimization C Measurement

Making educated decisions

= Only optimize code after measuring its performance

= Objectives
= Runtime
= Cycles
= Operations per cycle (FLOP/s)
= Usage of architecture features ($, (S)MT, SIMD, ...)

Measuring

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 12 November 2018 slide 3118 J Forschungszentrum

Optimization C Measurement

Making educated decisions

= Only optimize code after measuring its performance

= Objectives
= Runtime
= Cycles
= Operations per cycle (FLOP/s)
= Usage of architecture features ($, (S)MT, SIMD, ...)

= Correlate measurements with code
— hot spots/performance limiters

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 12 November 2018 slide 3118 J Forschungszentrum

Optimization C Measurement

Making educated decisions

Only optimize code after measuring its performance

Objectives
= Runtime
= Cycles
= Operations per cycle (FLOP/s)
= Usage of architecture features ($, (S)MT, SIMD, ...)

Correlate measurements with code
— hot spots/performance limiters

Iterative process

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 12 November 2018 slide 3118 J Forschungszentrum

Measurement

Two options for insight
Coarse Timestamps to time program / parts of program

= Only good for first glimpse
= No insight to inner workings

Detailed Performance counters to study usage of hardware architecture

Instructions — Flushs
Cycles— CPl,IPC Branches
Floating point operations
Stalled cycles

Cache misses, cache hits
Prefetches

CPU migrations

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 12 November 2018 slide 4118 J Forschungszentrum

Measurement ® Native

m Derived
m Software

Two options for insight
Coarse Timestamps to time program / parts of program

= Only good for first glimpse
= No insight to inner workings

Detailed Performance counters to study usage of hardware architecture

» |Instructions — » Flushs

= Cycles— CPl, 1P = Branches

= Floating point operations = CPU migrations
= Stalled cycles .

» Cache misses, cache hits

» Prefetches

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 12 November 2018 Slide 4118 J Forschungszentrum

Performance Counters

@) JULICH| &5
SUPERCOMPUTING
Member of the Helmholtz Association 12 November 2018 Slide 5118 Furschungszentvum CENTRE

Performance Monitoring Unit
Right next to the core

= Part of processor periphery, but dedicated registers
= History

= First occurrence: Intel Pentium, reverse-engineered 1994 (RDPMC) [2]
= Originally for chip developers
= Later embraced for software developers and tuners

= Operation: Certain events counted at logic level, then aggregated to registers

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 12 November 2018 slide 6118 J Forschungszentrum

Performance Monitoring Unit
Right next to the core

= Part of processor periphery, but dedicated registers
= History
= First occurrence: Intel Pentium, reverse-engineered 1994 (RDPMC) [2]

= Originally for chip developers
= Later embraced for software developers and tuners

= Operation: Certain events counted at logic level, then aggregated to registers

Pros Cons
® [ow overhead m Processor-specific
m Very specific requests possible; detailed = Hard to measure
information ® Limited amount of counter registers
= |nformation about CPU core, nest, cache, m Compressed information content

memory

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

Member of the Helmholtz Association 12 November 2018 Slide 6118

Working with Performance Counters

Some caveats

Mind the clock rates!

= Modern processors have dynamic clock rates (CPUs, GPUs)
— Might skew results
= Some counters might not run at nominal clock rate

Limited counter registers
POWERQ: 6 registers for hardware counters (PMC1 - PMC6) [3]
Cores, Threads (OpenMP)

= Absolutely possible

= Complicates things slightly

= Pinning necessary
— OMP_PROC_BIND, OMP_PLACES; PAPI_thread_init()

Nodes (MPI): Counters independent of MPI, but aggregation tool useful (Score-P, ...)

@) JULICH
Member of the Helmholtz Association 12 November 2018 slide 7118 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

http://www.openmp.org/mp-documents/openmp-4.5.pdf#page=303
http://www.openmp.org/mp-documents/openmp-4.5.pdf#page=304
https://icl.cs.utk.edu/projects/papi/wiki/Threads

Performance Counters on POWER9

@) JULICH| &5
SUPERCOMPUTING
Member of the Helmholtz Association 12 November 2018 Slide 8118 Furschungszentvum CENTRE

POWER9 Compartments

Sources of PMU events
POWER9

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 12 November 2018 Slide 9118 Forschungszentrum CENTRE

POWER9 Compartments

Sources of PMU events
POWER9

Core-Level Nest-Level

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 12 November 2018 Slide 9118 Forschungszentvum CENTRE

POWER9 Compartments

Sources of PMU events
POWER9

T

Nest-Level

= Core/thread level

= Core pipeline analysis
= Frontend
= Branch prediction
= Execution units
...

= Behavior investigation
= Stalls

= Utilization
L I

Member of the Helmholtz Association 12 November 2018 Slide 9118

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

POWER9 Compartments

Sources of PMU events
POWER9

T

Core-Level

= Core/thread level

= Core pipeline analysis
= Frontend
= Branch prediction
= Execution units
...

= Behavior investigation
= Stalls

= Utilization
L I

Member of the Helmholtz Association 12 November 2018

Nest-Level

= |3 cache, interconnect fabric,
memory channels
= Analysis of

= Main memory access
= Bandwidth

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Slide 9118 J Forschungszentrum

POWER9 Performance Counters

Instructions, Stalls

PM_LD_MISS_L1 Load missed L1 cache

Store: PM_ST_MISS_L1; Local L4 Hit: PM_DATA_FROM_LL4

Member of the Helmholtz Association 12 November 2018 Slide 10118

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

POWER9 Performance Counters

Instructions, Stalls

PM_LD_MISS_L1
PM_INST_CMPL
PM_VECTOR_FLOP_CMPL
PM_RUN_CYC

Member of the Helmholtz Association

Load missed L1 cache
Store: PM_ST_MISS_L1; Local L4 Hit: PM_DATA_FROM_LL4

Instructions completed

Also: PM_RUN_INST_CMPL

Vector FP instruction completed

Also: PM_2FLOP_CMPL

Total cycles run
le. db

d by the

Processor cycl

12 November 2018 Slide 10118

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

POWER9 Performance Counters

Instructions, Stalls

PM_LD_MISS_L1 Load missed L1 cache

Store: PM_ST_MISS_L1; Local L4 Hit: PM_DATA_FROM_L L4
PM_INST_CMPL Instructions completed
Also: PM_RUN_INST_CMPL
PM_VECTOR_FLOP_CMPL Vector FP instruction completed
Also: PM_2FLOP_CMPL
PM_RUN_CYC Total cycles run
Processor cycles gated by the run latch

PM_CMPLU_STALL Completion stall

Cycles in which a thread did not complete any groups, but there were entries

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 12 November 2018 Slide 10118 Furschungszentrum CENTRE

POWER9 Performance Counters

Instructions, Stalls

PM_LD_MISS_L1 Load missed L1 cache

Store: PM_ST_MISS_L1; Local L4 Hit: PM_DATA_FROM_LL4
PM_INST_CMPL Instructions completed
Also: PM_RUN_INST_CMPL
PM_VECTOR_FLOP_CMPL Vector FP instruction completed
Also: PM_2FLOP_CMPL

PM_RUN_CYC Total cycles run

Processor cycles gated by the run latch

PM_CMPLU_STALL Completion stall

Cycles in which a thread did not complete any groups, but there were entries

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 12 November 2018 Slide 10118 Furschungszentrum CENTRE

POWER9 Performance Counters

Instructions, Stalls

PM_LD_MISS_L1
PM_INST_CMPL
PM_VECTOR_FLOP_CMPL
PM_RUN_CYC

Load missed L1 cache
Store: PM_ST_MISS_L1; Local L4 Hit: PM_DATA_FROM_L L4

Instructions completed

Also: PM_RUN_INST_CMPL

Vector FP instruction completed
Also: PM_2FLOP_CMPL

Total cycles run

Processor cycles gated by the run latch

PM_CMPLU_STALL
PM_CMPLU_STALL_THRD
PM_CMPLU_STALL_BRU
PM_CMPLU_STALL_LSU

Completion stall

Cycles in which a thread did not complete any groups, but there were entries
Completion stall due to thread conflict

Completion stalled because the thread was blocked

Stall due to BRU

BRU: Branch Unit

Completion stall by LSU instruction

LSU: Load/Store Unit

Member of the Helmholtz Association

12 November 2018 Slide 10118

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

POWER9 Performance Counters

Instructions, Stalls

PM_LD_MISS_L1
PM_INST_CMPL
PM_VECTOR_FLOP_CMPL
PM_RUN_CYC

Load missed L1 cache

Store: PM_ST_MISS_L1; Local L4 Hit: PM_DATA_FROM_LL4
Instructions completed

Also: PM_RUN_INST_CMPL

Vector FP instruction completed

Also: PM_2FLOP_CMPL

Total cycles run

Processor cycles gated by the run latch

PM_CMPLU_STALL

'PM_CMPLU_STALL_THRD

PM_CMPLU_STALL_BRU
PM_CMPLU_STALL_LSU

Completion stall

Cycles in which a thread did not complete any groups, but there v

Completion stall due to thread conflict

Completion stalled because the thread was blocked
Stall due to BRU
BRU: Branch Unit

Completion stall by LSU instruction

LSU: Load)/Store Unit

ere entries

Member of the Helmholtz Association

12 November 2018 Slide 10118

@) JULICH | u=
SUPERCOMPUTING
Forschungszentrum CENTRE

POWER9 Performance Counters

Instructions, Stalls

PM_LD_MISS_L1
PM_INST_CMPL
PM_VECTOR_FLOP_CMPL
PM_RUN_CYC

Load missed L1 cache

Store: PM_ST_MISS_L1; Local L4 Hit: PM_DATA_FROM_LL4
Instructions completed

Also: PM_RUN_INST_CMPL

Vector FP instruction completed

Also: PM_2FLOP_CMPL

Total cycles run

Processor cycles gated by the run latch

POWERS CPI Stack

PM_CMPLU_STALL

'PM_CMPLU_STALL_THRD

PM_CMPLU_STALL_BRU
PM_CMPLU_STALL_LSU

Completion stall

Cycles in which a thread did not complete any groups, but there v

Completion stall due to thread conflict

Completion stalled because the thread was blocked
Stall due to BRU
BRU: Branch Unit

Completion stall by LSU instruction

LSU: Load)/Store Unit

ere entries

Member of the Helmholtz Association

12 November 2018 Slide 10118

@) JULICH | u=
SUPERCOMPUTING
Forschungszentrum CENTRE

POWER9 Performance Counters

Instructions, Stalls

PM_LD_MISS_L1
PM_INST_CMPL
PM_VECTOR_FLOP_CMPL
PM_RUN_CYC

Load missed L1 cache

Store: PM_ST_MISS_L1; Local L4 Hit: PM_DATA_FROM_LL4
Instructions completed

Also: PM_RUN_INST_CMPL

Vector FP instruction completed

Also: PM_2FLOP_CMPL

Total cycles run

Processor cycles gated by the run latch

POWERS CPI Stack

PM_CMPLU_STALL

'PM_CMPLU_STALL_THRD

PM_CMPLU_STALL_BRU
PM_CMPLU_STALL_LSU

Completion stall

Cycles in which a thread did not complete any groups, but there v

Completion stall due to thread conflict

Completion stalled because the thread was blocked
Stall due to BRU
BRU: Branch Unit

Completion stall by LSU instruction

LSU: Load)/Store Unit

ere entries

Member of the Helmholtz Association

12 November 2018 Slide 10118

@) JULICH | u=
SUPERCOMPUTING
Forschungszentrum CENTRE

Number of counters for POWER9:
959

See appendix for more on counters
(CPI stack; resources)

@) JULICH| &2
SUPERCOMPUTING
Member of the Helmholtz Association 12 November 2018 Slide 10118 Forschungszentrum CENTRE

Measuring Counters

@) JULICH| &5
SUPERCOMPUTING
Member of the Helmholtz Association 12 November 2018 Slide 11118 Furschungszentrum CENTRE

Overview

perf Linux’tool (also called perf_events)
PAPI C/C++API
Score-P Measurement environment (appendix
Likwid Set of command line utilities for detailed analysis
perf_event_open() Linuxsystem call from linux/perf_event.h
... Many more solutions, usually relying on perf

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 12 November 2018 slide 12118 J Forschungszentrum

perf

Linux’ own performance tool

= Part of Linux kernel since 2009 (v. 2.6.31)
= Example usage: perf stat ./app

$ perf stat ./poisson2d
Performance counter stats for './poisson2d':

.000 CPUs utilized
.005 K/sec
.000 K/sec
.165 K/sec
477 GHz .67%)
.13% frontend cycles idle .01%)
64.48% backend cycles idle .01%)
1.42 insn per cycle
stalled cycles per insn .68%)
192.761 M/sec .00%)
0.03% of all branches .00%)

65703.208586 task-clock (msec)
355 context-switches
0 cpu-migrations
10,847 page-faults
228,425,964,399 cycles
299,409,593 stalled-cycles-front
147,289,312,280 stalled-cycles-backend
323,403,983,324 instructions

12,665,027,391 branches
4,256,513 branch-misses

EE R

65.715156815 seconds time elapsed

Member of the Helmholtz Association 12 November 2018 Slide 13118

https://lwn.net/Articles/339361/

perf

Linux’ own performance tool

= Part of Linux kernel since 2009 (v. 2.6.31)
= Usage: perf stat ./app
= Raw counter example: perf stat -e r600fs4 ./app

$ perf stat -e r600f4 ./poisson2d

Performance counter stats for './poisson2d':
228,457,525,677 r600f4

65.761947405 seconds time elapsed

Member of the Helmholtz Association 12 November 2018 Slide 13118

https://lwn.net/Articles/339361/

perf
Linux’ own performance tool
= Part of Linux kernel since 2009 (v. 2.6.31)
= Usage: perf stat ./app
= Raw counter example: perf stat -e r600fs4 ./app
= More in appendix

Member of the Helmholtz Association 12 November 2018 Slide 13118

https://lwn.net/Articles/339361/

PAPI

Measure where it hurts...

= Performance Application Programming Interface
= API| for C/C++, Fortran

@) JULICH| &5
SUPERCOMPUTING
Member of the Helmholtz Association 12 November 2018 Slide 14118 Forschungszentrum CENTRE

PAPI

Measure where it hurts...

= Performance Application Programming Interface

= API| for C/C++, Fortran

= Goal: Create common (and easy) interface to performance counters

= Two API layers appendix
= High-Level API: Most-commonly needed information capsuled by convenient functions
= Low-Level API: Access all the counters!

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

Member of the Helmholtz Association 12 November 2018 Slide 14118

PAPI

Measure where it hurts...

Performance Application Programming Interface
API for C/C++, Fortran
Goal: Create common (and easy) interface to performance counters
Two API layers appendix

= High-Level API: Most-commonly needed information capsuled by convenient functions

= Low-Level API: Access all the counters!
Command line utilities

papi_avail Listaliased, common counters
Use papi_avail -e EVENT to get description and options for EVENT
papi_native_avail Listall possible counters, with details

Extendable by Component PAPI (GPU!)

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

Member of the Helmholtz Association 12 November 2018 Slide 14118

PAPI

Measure where it hurts...

Performance Application Programming Interface
API for C/C++, Fortran

Goal: Create common (and easy) interface to performance counters
Two API layers appendix

= High-Level API: Most-commonly needed information capsuled by convenient functions
= Low-Level API: Access all the counters!

Command line utilities
papi_avail Listaliased, common counters
Use papi_avail -e EVENT to get description and options for EVENT
papi_native_avail Listall possible counters, with details
Extendable by Component PAPI (GPU!)
Comparison to perf: Instrument specific parts of code, with different counters

@) JULICH
Member of the Helmholtz Association 12 November 2018 slide 14118 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

PAPI

papi_avail

$ papi_avail
Available PAPI preset and user defined events plus hardware information.

PAPI version

Operating system : Linux 4.14.0-49.11.1.el7a.ppcb4le
Vendor string and code : IBM (3, 0x3)
Model string and code : 8335-GTW (0, 0x0)
CPU revision : 2.000000

CPU Max MHz : 3800

CPU Min MHz : 2300

Total cores : 176

SMT threads per core H

Cores per socket : 22

Sockets

Cores per NUMA region

NUMA regions

Number Hardware Counters

Member of the Helmholtz Association 12 November 2018 Slide 15118

PAPI

papi_avail

Max Multiplex Counters . 384
Fast counter read (rdpmc): no

Code Avail Deriv Description (Note)

PAPI_L1_DCM 0x80000000 Yes Yes Level 1 data cache misses
PAPI L1 ICM 0x80000001 Yes No Level 1 instruction cache misses
PAPI_L2_DCM 0x80000002 Yes No Level 2 data cache misses
PAPI L2 ICM 0x80000003 Yes No Level 2 instruction cache misses
PAPI_L3_DCM 0x80000004 Yes Yes Level 3 data cache misses
PAPI L3 _ICM 0x80000005 Yes No Level 3 instruction cache misses
PAPI_L1_TCM 0x80000006 No No Level 1 cache misses

PAPI_L2_TCM 0x80000007 No No Level 2 cache misses

PAPI_L3_TCM 0x80000008 No No Level 3 cache misses

Member of the Helmholtz Association 12 November 2018 Slide 15118

PAPI

papi_avail

$ papi_avail -e PM_DATA_FROM_L3MISS
Available PAPI preset and user defined events plus hardware information.

Event name: PM_DATA_FROM_L3MISS

Event Code: 0x40000011

Number of Register Values: 0

Description: |Demand LD - L3 Miss (not L2 hit and not L3 hit).

Unit Masks:

Mask Info: :u=0|monitor at user level]

Mask Info: :k=0|monitor at kernel levell
Mask Info: :h=0|monitor at hypervisor level]
Mask Info: :period=0]|sampling period|

Mask Info: :freq=0|sampling frequency (Hz)|
Mask Info: :excl=0|exclusive access|

Mask Info: :mg=0|monitor guest execution]

Member of the Helmholtz Association 12 November 2018 Slide 15118

PAPI

Notes on usage; Tipps

= Important functions in High Level API
PAPI_num_counters() # available counter registers
PAPI_flops() Getrealtime, processortime, # floating point operations, and MFLOPs/s
PAPI_ipc() #instructionsand IPC (+rtime/ptime)
PAPI_epc() # counts of arbitrary event (+rtime/ptime)

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 12 November 2018 Slide 16118

http://icl.cs.utk.edu/papi/docs/
http://icl.cs.utk.edu/papi/

PAPI

Notes on usage; Tipps

= Important functions in High Level API
PAPI_num_counters() # available counter registers
PAPI_flops() Getrealtime, processortime, # floating point operations, and MFLOPs/s
PAPI_ipc() #instructionsand IPC (+rtime/ptime)
PAPI_epc() # counts of arbitrary event (+rtime/ptime)
= Important functions in Low Level API
PAPI_add_event() Add aliased event to event set
PAPI_add_named_event() Add any eventto event set
PAPI_thread_init() Initialize thread supportin PAPI
= Documentation online and in man pages (man papi_add_event)

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 12 November 2018 Slide 16118

http://icl.cs.utk.edu/papi/docs/
http://icl.cs.utk.edu/papi/

PAPI

Notes on usage; Tipps

= Important functions in High Level API
PAPI_num_counters() # available counter registers
PAPI_flops() Getrealtime, processortime, # floating point operations, and MFLOPs/s
PAPI_ipc() #instructionsand IPC (+rtime/ptime)
PAPI_epc() # counts of arbitrary event (+rtime/ptime)
= Important functions in Low Level API
PAPI_add_event() Add aliased event to event set
PAPI_add_named_event() Add any eventto event set
PAPI_thread_init() Initialize thread supportin PAPI
= Documentation online and in man pages (man papi_add_event)
= All PAPI calls return status code; check for it! C++, C
= Convert names of performance counters with Libpfm4 (appendix

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 12 November 2018 Slide 16118

http://icl.cs.utk.edu/papi/docs/
http://icl.cs.utk.edu/papi/

PAPI

Notes on usage; Tipps

= Important functions in High Level API
PAPI_num_counters() # available counter registers
PAPI_flops() Getrealtime, processortime, # floating point operations, and MFLOPs/s
PAPI_ipc() #instructionsand IPC (+rtime/ptime)
PAPI_epc() # counts of arbitrary event (+rtime/ptime)
= Important functions in Low Level API
PAPI_add_event() Add aliased event to event set
PAPI_add_named_event() Add any eventto event set
PAPI_thread_init() Initialize thread supportin PAPI
= Documentation online and in man pages (man papi_add_event)
= All PAPI calls return status code; check for it! C++, C
= Convert names of performance counters with Libpfm4 (appendix

— http://icl.cs.utk.edu/papi/

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 12 November 2018 Slide 16118

http://icl.cs.utk.edu/papi/docs/
http://icl.cs.utk.edu/papi/

GPU Counters

A glimpse ahead

= Counters built rightin
= Grouped into domains by topic
= NVIDIA differentiates between appendix

Event Countable activity or occurrence on GPU device
Examples: shared_store, generic_load, shared_atom
Metric Characteristic calculated from one or more events
Examples: executed_ipc, flop_count_dp_fma,achieved_occupancy

= Usually: access via nvprof / Visual Profiler; but exposed via CUPTI for 3rd party

— Afternoon session / appendix

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 12 November 2018 Slide 17118 J

Forschungszentrum

Conclusions

What we’ve learned

Large set of performance counters on POWER9 processors

Right next to (inside) core(s)

Provide detailed insight for performance analysis on many levels
Different measurement strategies and tools

= perf
= PAPI
= Score-P

Also on GPU

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 12 November 2018 slide 18118 J Forschungszentrum

Conclusions

What we’ve learned

Large set of performance counters on POWER9 processors

Right next to (inside) core(s)

Provide detailed insight for performance analysis on many levels
Different measurement strategies and tools

= perf
= PAPI
= Score-P Thankyou n!
- tention:
Also on GPU for your o]

@fz-juelich-d¢

a.herten

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 12 November 2018 slide 18118 J Forschungszentrum

mailto:a.herten@fz-juelich.de

Appendix
Knuth on Optimization
POWER9 Performance Counters
perf
PAPI Supplementary
Score-P
GPU Counters
Glossary
References

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 12 November 2018 Slide 1133 J Forschungszentrum

Appendix

Knuth on Optimization

@) JULICH| &5
SUPERCOMPUTING
Member of the Helmholtz Association 12 November 2018 Slide 2133 Forschungszentvum CENTRE

Knuth on Optimization
The full quote, finally

There is no doubt that the grail of efficiency leads to abuse. Programmers waste
enormous amounts of time thinking about, or worrying about, the speed of noncritical
parts of their programs, and these attempts at efficiency actually have a strong nega-
tive impact when debugging and maintenance are considered. We should forget about
small efficiencies, say about 97 % of the time: pre mature optimization is the root of all
evil.

Yet we should not pass up our opportunities in that critical 3 %. A good programmer
will not be lulled into complacency by such reasoning, he will be wise to look carefully
at the critical code; but only after that code has been identified

- Donald Knuth in “Structured Programming with Go to Statements” [4]

JULICH
SUPERCOMPUTING
CENTRE

Forschungszentrum

@) JULICH
Member of the Helmholtz Association 12 November 2018 Slide 3133 J

Appendix

POWER9 Performance Counters

@) JULICH| &5
SUPERCOMPUTING
Member of the Helmholtz Association 12 November 2018 Slide 4133 Forschungszentvum CENTRE

POWER Performance Counters

= Further information on counters at IBM website

= PMU Events for POWER9 in the Linux kernel

= JSON overview of OpenPOWER PMU events on Github

= Events and groups supported on POWERS architecture

= Derived metrics defined for POWERS architecture

= Table 11-18 and Table D-1 of POWERS8 Processor User’s Manual for the Single-Chip Module
OProfile: ppc64 POWERS events, ppc64 POWER9 events
= List available counters on system

= With PAPI: papi_native_avail

= With showevtinfo from libpfm’s /examples/ directory

./showevtinfo | \
grep -e "Name" -e "Desc" | sed "s/".\+: //g" | paste -d'\t' - -

= See next slide for CPI stack visualization
= Most important counters for OpenMP: DMISS_PM_CMPLU_STALL_DMISS_L3MISS,
PM_CMPLU_STALL_DMISS_REMOTE

@) JULICH
Member of the Helmholtz Association 12 November 2018 Slide 5133 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

https://github.com/torvalds/linux/tree/master/tools/perf/pmu-events/arch/powerpc/power9
https://github.com/open-power/power-pmu-events
http://www.ibm.com/support/knowledgecenter/SSFK5S_2.2.0/com.ibm.cluster.pedev.v2r2.pedev100.doc/bl7ug_power8metrics.htm
http://www.ibm.com/support/knowledgecenter/SSFK5S_2.2.0/com.ibm.cluster.pedev.v2r2.pedev100.doc/bl7ug_derivedmetricspower8.htm
http://oprofile.sourceforge.net/docs/ppc64-power8-events.php
http://oprofile.sourceforge.net/docs/ppc64-power9-events.php
http://perfmon2.sourceforge.net/

POWER 9 PMU Stack: CPI

POWER 8 PMU Stack: CPI

Not all are
available
for POWER9!

Group Waiing
= o Complete

| Runmstruction

Other

0 wwsHic
PaCHPLU_STALL_trsvic

HsINC

ECC Delay
PACHPLU_STALL_MEN_ECC_DELAY
Other Thread'sFlush
[coQrul
PM_CHPLY_STALL_COU_FULL

Fixed-point Long |
PUOPLU_STALL_PULOIG

Vector long,

I [mm
ECTOR - Vector (other

Next o ComlateFlush
LU STALLATCG.FLUSI

C SUReee |
[imowwy staLesesecr

L om0

Glossary
BU sanching Uit
R Condiions! Register

LWSTHC Lightweight Sy
HINSINC Heaupueight Sychro-

Ecc mor Camecting Code
Derived Quaniity

Stollduero.

Threod blocked due o,

Nothing todspatch due o

[o cia sras ot o conrrer

[EELT L

Laviss
L Cachenins [PM_GET_osLor_ic_Lawss

Other
Branch Mispredict
PUGCT_MOSLOT_88_MpRED

Dispatch Held: Mapper

Branch Mispredict PU_GET_NOSLOT_DIS_NELD AP

and!-Cache Miss
PG noSLOT_BRWPRED_10M15S | pipatch Held:Stre Queue

PALGCT_HOSLOT_DI5?.HELD_ R0
b oispatch Held

Dispatch Held:lssue Queve
) PHGET_NOSLOT_DIsP_HELD_1550

Dispatch Held: Other

Appendix
perf

JULICH | srcrconrumne

Member of the Helmholtz Association 12 November 2018 Slide 8133 Forschungszentrum CENTRE

perf

Sub-commands

= Sub-commands for perf

perf list Listavailable counters
perf stat Run program;report performance data
perf record Run program;sample and save performance data
perf report Analyzed saved performance data (appendix)
perf top Like top, live-view of counters

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

Member of the Helmholtz Association 12 November 2018 Slide 9133

perf

Tipps, Tricks

= Option --repeat for statistical measurements
1.239 seconds time elapsed (+- 0.16%)

= Restrict counters to certain user-level modes by -e counter:m, withm=u (user), =k
(kernel), = h (hypervisor)

= perf modes: Per-thread (default), per-process (-p PID), per-CPU (-a)

= Other options

-d More details -B Add thousands’ delimiters
-d -d More more details -x Print machine-readable output
= More info

= web.eece.maine.edu/~vweaver/projects/perf_events/
= Brendan Gregg’s examples on perf usage

— https://perf.wiki.kernel.org/

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 12 November 2018 Slide 10133

web.eece.maine.edu/~vweaver/projects/perf_events/
http://www.brendangregg.com/perf.html
https://perf.wiki.kernel.org/

Deeper Analysis with perf

perf record

Usage: perf record ./app
[BN

$ perf record ./poisson2d

[perf record: Woken up 41 times to write data]

[nf_conntrack_ipv4] with build id ada66fe@@acc82eac85be0969a935e3167b09c88 not found, continuing without symbols
[nf_conntrack] with build id 2911e97a3bde3302788e8388d1e3c19408ad86¢cf not found, continuing without symbols
[ebtables] with build id bOaa834b86d596edeb5a72d1ebf3936a98b17bcf not found, continuing without symbols
[ip_tables] with build id 23fe04e7292b66a2cc104e8c5b026bsb3a911cac not found, continuing without symbols

[bridge] with build id b7a0fcdbca63084c22e04fcf32e0584d04193954 not found, continuing without symbols
[perf record: Captured and wrote 10.076 MB perf.data (263882 samples)]

$ 11 perf.data
1 aherten zam 10570296 Aug 26 19:24 perf.data

@) JULICH| &5
SUPERCOMPUTING
Member of the Helmholtz Association 12 November 2018 Slide 11133 Forschungszentrum CENTRE

Deeper Analysis with perf

perf report: Overview

Samples: 263K of event 'cycles:ppp', Event count (approx.): 228605683717, Thread: poisson2d
Overhead ~Command Shared Object Symbol
93.00% poisson2d poisson2d
4.70% poisson2d libm-2.17.so ol —
.84% poisson2d poisson2d .1 00000017.plt_call. fmaxa@GLIBC_2.17
.21% poisson2d libm-2.17.s0 .1 __exp_finite
.01% poisson2d [kernel.kallsyms] hrtimer_interrupt
.01% poisson2d [kernel.kallsyms] update_wall_time
.01% poisson2d libm-2.17.s0 .1 _GI___exp
.01% poisson2d [kernel.kallsyms] task_tick_fair
.01% poisson2d [kernel.kallsyms] rcu_check_callbacks
.01% poisson2d [kernel.kallsyms] __hrtimer_run_queues
poisson2d [kernel.kallsyms] __do_softirq
poisson2d [kernel.kallsyms] _raw_spin_lock
poisson2d [kernel.kallsyms] timer_interrupt
poisson2d [kernel.kallsyms] update_process_times
poisson2d [kernel.kallsyms] tick_sched_timer
poisson2d [kernel.kallsyms] rcu_process_callbacks
poisson2d poisson2d .1 00000017.plt_call.exp@@GLIBC_2.17
poisson2d [kernel.kallsyms] ktime_get_update_offsets_now
poisson2d [kernel.kallsyms] account_process_tick
poisson2d [kernel.kallsyms] run_posix_cpu_timers
poisson2d [kernel.kallsyms] trigger_load_balance
poisson2d [kernel.kallsyms] scheduler_tick
poisson2d [kernel.kallsyms] clear_user_page
poisson2d [kernel.kallsyms] update_cfs_shares
poisson2d [kernel.kallsyms] tick_do_update_jiffies64

Member of the Helmholtz Association 12 November 2018 Slide 11133

9 JULICH | 5 upome

Forschungszentrum CENTRE

Deeper Analysis with perf

perf report: Zoomtomain()

main /gpfs/homeb/zam/aherten/NVAL/OtherProgramming/OpenPOWER-SC17/PAPT-Test/poisson2d
0.00 wz r9,100(r31)
mullw r9,r10,r9
extsw r9,r9
1wz r10,140(r31)
add r9,r10,r9
extsw r9,r9
rldicr r9,r9,3,60
d r10,184(r31)
add r9,r10,r9
1fd £12,0(r9)
r10,136(r31)
r9,100(r31)
r9,r10,r9
9,19
r10,140(r31)
r9,r10,r9
9,19
r9,19,3,60
r1e,168(r31)
r9,r10,r9
0,0(r9)
fo,f12,fo
fo,fo
f2,f0
1,128(r31)
10000780 <00000017.plt_call.fmaxaaGLIBC_2.17>
ud r2,24(r1)
h' for help on key bindings

SUPERCOMPUTING
Member of the Helmholtz Association 12 November 2018 Slide 11133 Forschungszentrum | CENTRE

Appendix
PAPI Supplementary

@) JULICH | &=
SUPERCOMPUTING
Member of the Helmholtz Association 12 November 2018 Slide 12133 Forschungszentrum CENTRE

PAPI: High Level API

Usage: Source Code

// Setup
float realTime, procTime, mflops, ipc;
long long flpins, ins;

// Initial call
PAPI_flops(&realTime, &procTime, &flpins, &mflops);
PAPI_ipc(&realTime, &procTime, &ins, &ipc);

// Compute
mult(m, n, p, A, B, C);

// Finalize call
PAPI_flops(&realTime, &SprocTime, &flpins, &mflops);
PAPI_ipc(&realTime, &procTime, &ins, &ipc);

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 12 November 2018 Slide 13133

PAPI: Low Level API

Usage: Source Code

int EventSet = PAPI_NULL;
long long values[2];

// PAPI: Setup

PAPI_library_init(PAPI_VER_CURRENT);
PAPI_create_eventset(SEventSet);

// PAPI: Test availability of counters
PAPI_query_named_event("PM_CMPLU_STALL_VSU");
PAPI_query_named_event("PM_CMPLU_STALL_SCALAR");

// PAPI: Add counters

PAPI_add_named_event(EventSet, "PM_CMPLU_STALL_VSU");
PAPI_add_named_event(EventSet, "PM_CMPLU_STALL_SCALAR");
// PAPI: Start collection

PAPI_start(EventSet);

// Compute

do_something();

// PAPI: End collection

PAPI_CALL(PAPI_stop(EventSet, values) , PAPI_OK) ;

Member of the Helmholtz Association 12 November 2018 Slide 14133

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

PAPI: Low Level API

Usage: Source Code

int EventSet = PAPI_NULL;
long long values[2];

// PAPI: Setup

PAPI_library_init(PAPI_VER_CURRENT);
PAPI_create_eventset(SEventSet);

// PAPI: Test availability of counters
PAPI_query_named_event("PM_CMPLU_STALL_VSU");
PAPI_query_named_event("PM_CMPLU_STALL_SCALAR");

// PAPI: Add counters

PAPI_add_named_event(EventSet, "PM_CMPLU_STALL_VSU");
PAPI_add_named_event(EventSet, "PM_CMPLU_STALL_SCALAR");
// PAPI: Start collection

PAPI_start(EventSet);

// Compute

do_something(};

// PAPI: End collection

PAPI_CALL(PAPI_stop(EventSet, values) , PAPI_OK) ;

Member of the Helmholtz Association 12 November 2018 Slide 14133

Pre-processor macro
for checking results!
See next slides!

g JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

PAPI Error Macro: C++

For easier status code checking

#include "papi.h"

#define PAPI_CALL(call, success) \
{ \
int err = call; \
if (success != err) \
std::cerr << "PAPI error for " << #call << " in L" << __LINE__ << " of " <<
— __ _FILE__ << ": " << PAPI strerror(err) << std::endl; \
}

// Second argument is code for GOOD,

// e.g. PAPI_OK or PAPI_VER _CURRENT or ..
//

// Call like:

PAPI_CALL(PAPI_start(EventSet), PAPI_OK);

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 12 November 2018 Slide 15133

PAPI Error Macro: C

For easier status code checking

#include "papi.h"
#define PAPI_CALL(call, success)
{

int err = call;

if (success != err)

— -

fprintf(stderr, "PAPI error for %s in L%d of %s: %s\n", #call, __ LINE__,

— __FILE__, PAPI_strerror(err)); \

}

// Second argument is code for GOOD,

// e.g. PAPI_OK or PAPI_VER _CURRENT or ..
//

// Call like:

PAPI_CALL(PAPI_start(EventSet), PAPI_OK);

Member of the Helmholtz Association 12 November 2018 Slide 16133

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

libpfm4

A helper Library

Helper library for setting up counters interfacing with perf kernel environment

Used by PAPI to resolve counters

Handy as translation: Named counters — raw counters

Use command line utility perf_examples/evt2raw to get raw counter for perf

$./evt2raw PM_CMPLU_STALL_VSU

r2do12

— http://perfmon2.sourceforge.net/docs_v4.html

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 12 November 2018 slide 17133 J Forschungszentrum

http://perfmon2.sourceforge.net/docs_v4.html

Appendix

Score-P

@) JULICH| &5
SUPERCOMPUTING
Member of the Helmholtz Association 12 November 2018 Slide 18133 Furschungszentrum CENTRE

Score-P

Introduction

m Measurement infrastructure for

profiling, event tracing, online TAUdD
M)
analysis ~ "‘ "’

= Output format input for many T —) I

L

analysis tools (Cube, Vampir, t
Periscope, Scalasca, Tau)

Online

Hardware counter interface
(PAPI, rusage, PERF, plugins)

Score-P measurement infrastructure

I Instrumentation wrapper I

Process-level Thread-level Accelerator-based Source code Sampling

parallelism parallelism parallelism instrumentation interrupts
(MPI, SHMEM) (OpenMP, Pthreads) (CUDA, OpenCL) (Compiler, PDT, User) (PAPI, PERF)

Application
.o .
@) JULICH | &2
SUPERCOMPUTING
Member of the Helmholtz Association 12 November 2018 Slide 19133 Forschungszentrum | CENTRE

Score-P

Howto

= Prefix compiler executable by scorep
o0 e

$ scorep clang++ -o app code.cpp

— Adds instrumentation calls to binary
= Profiling output is stored to file after run of binary

= Steer with environment variables at run time
[] o

$ export SCOREP_METRIC_PAPI=PAPI_FP_OPS,PM_CMPLU_STALL_VSU

$./app

= Use different PAPI counters per run!
= Quick visualization with Cube; scoring with scorep-score

Member of the Helmholtz Association 12 November 2018 Slide 20133

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

http://www.scalasca.org/software/cube-4.x/cube.html

Score-P

Principle analysis with scorep-score

Usage: scorep-score -r FILE

@ () herten — aherten@jupp00: ~/NVAL/Other/OpenPOWER-SC16/test — ssh <« ssh juppext

aherten@jupp00:~/NVAL/Other/0OpenPOWER-SC16/test$ scorep-score —r —c 2 scorep-20160826_2106_1032520 L
6034857807 /profile.cubex

Estimated aggregate size of event trace: 149 bytes

Estimated requirements for largest trace buffer (max_buf): 149 bytes

Estimated memory requirements (SCOREP_TOTAL_MEMORY): 4097kB

(hint: When tracing set SCOREP_TOTAL_MEMORY=4097kB to avoid intermediate flushes
or reduce requirements using USR regions filters.)

flt type max_buf[B] visits time[s] time[%] time/visit[us] region
ALL 148 p 1.92 100.0 961066.48 ALL
USR 148 1.92 100.0 961066.48 USR

USR 74 1.89 98.4 1891933.34 _Z4multiiiPKfSO_Pf
USR 74 1 0.03 1.6 30199.62 main
aherten@jupp00:~/NVAL/Other/OpenPOWER-SC16/test$

Member of the Helmholtz Association 12 November 2018 Slide 21133

Score-P

Performance counter analysis with cube_dump

Usage: cube-dump -m METRIC FILE

[JOX J herten — aherten@jupp00: ~/NVAL/Other/OpenPOWER-SC16/test — ssh jupp

aherten@jupp00:~/NVAL/Other/0OpenPOWER-SC16/test$ cube_dump —-m PAPI_FP_OPS scorep-20160830_1138_106367049 L]
09174321/profile.cubex

DATA
Print out the data of the metric PAPI_FP_OPS

Master thread

main(id=0) 721459
_Z4multiiiPKfS@_Pf(id=1) 432004097

aherten@jupp@0:~/NVAL/Other/OpenPOWER-SC16/test$

Member of the Helmholtz Association 12 November 2018 Slide 21133

Score-P
Analysis with Cube

eoce Cube-4.3.4: pider.fullcubex
Restore Seting Save Settings
Absolute Absolute Absolute <
[ericies | [catveo 1 3T oo
v O 0.00 Cycles (#) v M 14%e4m O - machine Linux
v O 0.00 Completion Stalls 9.27¢5 MAIN_ v O - node jupp00
» O 0.00 Stall due to BR or CR » O 1.07¢7 mpi_setup_ v O - MPIRank 0
> O 7 1.29e4 MPI_Bcast 7.81e8 Master thread
» O 1.02¢11 Stall due to Fixed-Point » [2.40e4 env_setup_ 1.29e8 OMP thread 1
> I 8.38e10 Stall due to Vector/Scalar 56.00 zone_setup_ 2.89e8 OMP thread 2
v O 0.00 Stall due to Load/Store » I 1.62e4 map_zones_ 1.61e8 OMP thread 3
v [6.38e8 Stall due to Deache Miss 667.00 zone._starts._ » O 1.22¢9 MPI Rank 1
v 0 Stall due to L2/L3 Hit 432.00 set_constants_. » O 1.31e9 MPI Rank 2
3.15e8 L2/L3 hit with confiict » M 7.15€7 initialize._ » O 1.20e9 MPI Rank 3
1.57e10 L2/L3 hit with no conflict » I 1.96¢7 exact rhs._
v O 0.00 Stall due to L3 Miss 3778.00 timer_clear..
3.15e7 Stall due to On-chip L2/L3 » [9.16e7 exch_abc..
5.48¢8 Stall due to On-chip Memory v @ 4116 adi_
6.6426 Stall due to Off-chip L2/L3/Mem » M 3.15e8 compute_ths..
5.84e7 Stall due to Off-node Memory » O 5.09¢9 x solve_

v [0.00 Stall due to LSU Reject
5.29e7 Reject due to Load-Hit
5.79e8 Reject due to ERAT Miss

I 7.098 Reject due to LMQ Full 6377.00 MPI_Barrier
M 1119 Reject due to Reject (other) 4772.00 timer _start_
[0 2.30e11 Stall due to Store Finish 1799.00 timer_stop_
[1.35€11 Stall due to Load Finish 251.00 timer_read_.
5.65e10 Stall due to Store Forward » [1.99e7 verify_
1.22¢10 Stall due to Load/Store (other) 3810.00 MPI_Reduce
3.96e7 Stall due to Next-to-Complete Flush 2.40e4 print results_
I 8.45€9 Stall due to other reasons 8220.00 MPI_Finalize

T1et Completion Table Empty
" O 3esent Completion Cycles

All (16 elements) B

00 1.57e10 (110%) 1.43e|2‘ ‘n.on 5.09€9 (32.51%) 1.67¢10] [0.00 1.57e10)

Selected "x_solve_*

Member of the Helmholtz Association 12 November 2018 Slide 22133

Appendix
GPU Counters

@) JULICH | &=
SUPERCOMPUTING
Member of the Helmholtz Association 12 November 2018 Slide 23133 Forschungszentrum CENTRE

GPU Example Events & Metrics

NAME NVIDIA Description (quoted)
gld_inst_8bit Total number of 8-bit global load instructions that are executed by all the threads across all
thread blocks.
threads_launched Number of threads launched on a multiprocessor.
inst_executed Number of instructions executed, do not include replays.
shared_store Number of executed store instructions where state space is specified as shared, increments
per warp on a multiprocessor.

executed_ipc Instructions executed per cycle

achieved_occupancy Ratio of the average active warps per active cycle to the maximum number of warps
supported on a multiprocessor

11_cache_local_hit_rate Hitratein L1 cache for local loads and stores

gld_efficiency Ratio of requested global memory load throughput to required global memory load
throughput.
flop_count_dp Number of double-precision floating-point operations executed non-predicated threads
(add, multiply, multiply-accumulate and special)
stall_pipe_busy Percentage of stalls occurring because a compute operation cannot be performed because

the compute pipeline is busy '
J JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Member of the Helmholtz Association 12 November 2018 Slide 24133

Measuring GPU counters

Tools

CUPTI C/C++-APIthrough cupti.h
= Activity API: Trace CPU/GPU activity
= Callback API: Hooks for own functions
= Event / Metric API: Read counters and metrics
— Targets developers of profiling tools
PAPI All PAPI instrumentation through PAPI-C, e.g.
cuda:::device:0:threads_launched
Score-P Mature CUDA support
= Prefix nvcc compilation with scorep
= Set environment variable SCOREP_CUDA_ENABLE=yes
= Run, analyze
nvprof, Visual Profiler NVIDIA’s solutions

@) JULICH
Member of the Helmholtz Association 12 November 2018 slide 25133 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

nvprof

GPU command-line measurements

Usage: nvprof --events AB --metrics C,D /app

@ [herten — aherten@JUHYDRA: IDIA_CUDA-7.5_ 5_64/lir | — ssh juhydra

ixMulCUDA<int: , floatx, int, int)" (0 of 3 Replaying kernel "void matrixMulCUDA<int=32>(floatx, floa

atk, int, int Replaying kernel "void matrixMulCUDA<int=32>(float, floatk, float#, int, int)" (done)

18158== Replaying kernel "void matrixMulCUDA<int=32>(float*, floatx, floatk, int, int)" (@ of 3) 815 Replaying kernel "void matr
ixMulCUDA<int=32>(floatk, floatx, floatx, int, int)" (@ of 3 i 0id matrixMulCUDA<int=32>(floatx,

int, int)" (@ of 3) 815! Replaying kernel "void matrixMulCUDA<int=32>(float*, float*, floatx, int, int)" (done)
Performance= 1.69 GFlop/s, Time= 77.513 msec, Size= 131072000 Ops, WorkgroupSize= 1024 threads/block
Checking computed result for correctness: Result = PASS

NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.
Profiling application: ./matrixMul
Profiling result:
Event result:
Invocations Event Name Min Max Avg
Device "Tesla K4om (0)"
Kernel: void matrixMulCUDA<int=32>(floatk, floatk, floatx, int, int)
301 threads_launched 204800 204800 204800

==18158== Metric result:
Invocations Metric Name Metric Description
Device "Tesla K4om (0)"
Kernel: void matrixMulCUDA<int=32>(floatx, float¥, floatx, int, int)
301 flop_count_sp Floating Point Operations(Single Precisi 131072000 131072000
ipc Executed IPC 1.472345 1.486837
achieved_occupancy Achieved Occupancy 0.960357 0.989658

aherten @ JUHYDRA in ~/cudaSamples/NVIDIA_CUDA-7.5_Samples/bin/x86_64/linux/release [21:47:45]
$ nvprof ——events threads_launched —-metrics flop_count_sp,ipc,achieved_occupancy ./matrixMul

Member of the Helmholtz Association 12 November 2018 Slide 26133

Avg

131072000
1.480249
0.975385

float*, flo

nvprof
Useful hints

Useful parameters to nvprof
--query-metrics Listall metrics
--query-events Listall events
--kernels name Limitscope to kernel
--print-gpu-trace Printtimeline of invocations
--aggregate-mode off No aggregation over all multiprocessors (average)
--csv OutputaCSV
--export-profile Store profilinginformation, e.g. for Visual Profiler

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 12 November 2018 slide 27133 J Forschungszentrum

Visual Profiler
An annotated time line view

§ *NewSession1 22

NVIDIA Visual Profiler

0355

0,455

[=I Process "matrixMul" (18924)
=] Thread 39720768
* Runtime API
* Driver API
* Profiling Overhead
[=! [0] Tesla K40m
=] Context 1 (CUDA)
L7 MemCpy (HtoD)
5 MemCpy (DtoH)
[~ Compute
7 100,0% void mat...
= Streams

i Analysis [Details & Console 5%

<terminated> matrixMul on juhydra

1 Settings

cudaEventSynchronize I

= B properties

Default

MatrixA(320,320), MatrixB(640,320)

done
Performance= 351.01 GFlop/s, Time=

Checking computed result for correctness: Result

[Matrix Multiply Using CUDA] - Starting...
GPU Device 0: "Tesla K40n" with compute capability 3.5

Computing result using CUDA Kernel...

0.373 msec, Size= 131072000 Ops, WorkgroupSize= 1024 threads/block

PASS

¥ Duration
Session

Member of the Helmholtz Association

12 November 2018

Slide 28133

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Visual Profiler
Analysis experiments

NVIDIA Visual Profiler

§ *NewSession1 22 = o
‘ 03s 0,35s 04s 0,45s 05s 0,55s 06s
- Driver API
 Profiling Overhead

=1 [0] Tesla K40m
=1 Context 1 (CUDA)

[l Analysis zz}]_‘qnexails B Console [Settings 8 = Properties 52 =g

& eset All [Analy Results

. a . void matrixMulCUDA <int=32>fl
5 . . bandwidth of the load/store instruction units within the multiprocessors.
‘void matrixMulCUDA<int=32>(Start

End
Kernel ...Limiter ¢ oon Duration
Grid Size
Block Size
Registers/Thread
Shared Memory/Block
¥ Occupancy
Theoretical
¥ Shared Memory Configuration
Shared Memory Requested
Shared Memory Executed
Shared Memory Bank Size

Kernel Latency

Kernel Compute

Kernel Memory

Utilization

Shared ...Pattern

iy,
iy,
g
Global...Pattern i { 30%
(i,
iy

Diverge...ecution ¢ Compute Memory (Load/Stt

J U L I c H \élLJJI;g:COMPUTING

Member of the Helmholtz Association 12 November 2018 Slide 28133 Forschungszentrum CENTRE

Appendix

Glossary & References

@) JULICH| &5
SUPERCOMPUTING
Member of the Helmholtz Association 12 November 2018 Slide 29133 Furschungszentvum CENTRE

Glossary |

CPI Cycles per Instructions; a metric to determine efficiency of an architecture or
program. 9, 10

IPC Instructions per Cycle; a metric to determine efficiency of an architecture or
program. 9, 10

MPI The Message Passing Interface, a API definition for multi-node computing. 14
NVIDIA US technology company creating GPUs. 45, 75, 76
OpenMP Directive-based programming, primarily for multi-threaded machines. 14

PAPI The Performance API, a C/C++ API for querying performance counters. 2, 30, 34,
35, 36,37, 38, 39,40,41,42,43, 44, 46, 47

@) JULICH
Member of the Helmholtz Association 12 November 2018 slide 30133 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Glossary I

perf Part of the Linux kernel which facilitates access to performance counters; comes
with command line utilities. 2, 30, 31, 32, 33, 34, 35, 36, 37, 46, 47
POWER CPU architecture from IBM, earlier: PowerPC. See also POWERS. 83
POWERS Version 8 of IBM’s POWER processor. 83

POWER9 The latest version of IBM’s POWER processor. 2, 14, 15,16, 17, 18, 19, 20, 21, 22,
23,24, 25, 26,27, 28, 46, 47, 48,51, 52, 54

Score-P Collection of tools for instrumenting and subsequently scoring applications to
gain insight into the program’s performance. 14, 30, 46, 47

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 12 November 2018 slide 31133 J Forschungszentrum

References |

[2] Terje Mathisen. Pentium Secrets. URL:
http://www.gamedev.net/page/resources/_/technical/general-
programming/pentium-secrets-r213 (pages 12, 13).

[3] IBM. Power ISA™, Version 3.0 B. Chapter 9. Performance Monitor Facility. 2017. URL:
https://wiki.raptorcs.com/w/images/c/cb/PowerISA_public.v3.0B.pdf
(page 14).

[4] Donald E. Knuth. “Structured Programming with Go to Statements”. In: ACM Comput.
Surv. 6.4 (Dec. 1974), pp. 261-301. 1SSN: 0360-0300. DOI: 10.1145/356635.356640. URL:
http://doi.acm.org/10.1145/356635.356640 (page 50).

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 12 November 2018 Slide 32133 J

Forschungszentrum

http://www.gamedev.net/page/resources/_/technical/general-programming/pentium-secrets-r213
http://www.gamedev.net/page/resources/_/technical/general-programming/pentium-secrets-r213
https://wiki.raptorcs.com/w/images/c/cb/PowerISA_public.v3.0B.pdf
https://doi.org/10.1145/356635.356640
http://doi.acm.org/10.1145/356635.356640

References: Images, Graphics |

[1] Sabri Tuzcu. Time is money. Freely available at Unsplash. URrL:
https://unsplash.com/photos/r1EwRk11P11I.

[5] Score-P Authors. Score-P User Manual. URL:
http://www.vi-hps.org/projects/score-p/.

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 12 November 2018 Slide 33133 J Forschungszentrum

https://unsplash.com/photos/r1EwRkllP1I
http://www.vi-hps.org/projects/score-p/

	Outline
	Motivation
	Performance Counters
	Introduction
	General Description

	Counters on POWER9
	Measuring Counters
	Overview
	perf
	PAPI
	GPUs

	Conclusion
	Appendix
	Appendix
	Knuth on Optimization
	POWER9 Performance Counters
	perf
	PAPI Supplementary
	Score-P
	GPU Counters
	Glossary & References
	Glossary

	Glossary
	References

	References
	References

