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Agenda =35

» Recall: openPOWER for HPC - differentiating features
» Porting a complex application: CPMD
» Porting a scalable benchmark: HPCG
» Porting a cloud benchmark: SNAP-ML

» HPC application porting: Trends
— Libraries
— Containerization
— Jupyter
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AC922: IBM POWERS9 for HPC

++—» HEM/DRAM Bus (aggregate B/W)
—» NVLINK

—p= X-Bus (SMF)

—» PCle Gend

-+— EDR IB

42 TF (6x7 TF)
96 GB (6x16 GB)
512 GB (2x16¢16 GB)

25 GB/s (2x12.5 GB/s)
83

HBM & DRAM speeds are aggregate (Read+Write).
All other speeds (X-Bus, NVLInk, PCle, IB) are bi-directional.

6.0 GB/s Head
2 2 GB/s Write
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AC922: GPU options

NVIDIA Volta GPU with NVLink 2.0

Graphics Memory

System Memory

Graphics Memory

System Memory
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75+75 GB/s

50+50 GB/s

Graphics Memory

POWER9

<:>| Graphics Memory

Graphics Memory

POWER9
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AC922 w/ 4 GPUs HEE

PCle slot (4x) e Power Supplies (2x)
¢ Gen4 PCle . LA~ ¢ 2200W
e 2,x16 HHHL Adapter e 200VAC, 277VAC,

e 1, Shared slot 400VDC input
e 1 x8 HHHL Adapter

Memory DIMM’s

BMC Card (16x)

e IPMI e 8 DDR4 IS DIMMs
e 1 Gb Ethernet per socket

e VGA e 8,616, 32,64,128GB
e 1USB3.0 DIMMs

NVidia Volta GPU

e 2 per socket

e SXM2 form factor
e 300W

e NVLink 2.0

e Air Cooled

Power 9 Processor (2x)
e 18, 22C water cooled
e 16, 20C air cooled
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AC922: POWER9 IO & Accelerator BW I=8E

Extreme Accelerator Bandwidth and
Reduced Latency
— PCle Gen 4 x 48 lanes —

E::;-..-'II
PCle
192 GB/s peak bandwidth (duplex) @ el

DDR

— IBM BlueLink 25Gb/s x 48 lanes — o G4 %
300 GB/s peak bandwidth (duplex) Fpoa K CAPIZO > . B
: : Devices ® 15
Coherent Memory and Virtual Addressing NVLink |28
Capability for all Accelerators - _ —|o
— CAPI 2.0 - 4x bandwidth of POWERS using ® | A
PCle Gen 4 h = i § %
— NVLink 2.0 — Next generation of GPU/CPU A=Al openCAP 3 |

3

bandwidth and integration using BlueLink Devices

— OpenCAPI - High bandwidth, low latency and
open interface using BluelLink
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Agenda

= Recall: openPOWER for HPC - differentiating features
» Porting a complex application: CPMD
= Porting a scalable benchmark: HPCG
= Porting a cloud benchmark: SNAP-ML

= HPC application porting: Trends
— Libraries
— Containerization
— Jupyter
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Porting a Complex HPC Application to POWER + GPUs IEER:

» Heterogeneous systems (eg, CPU/GPU) are key to reach exascale

* OpenPOWER systems combining CPUs and GPUs address key issues on the road
to scalable acceleration

— Compute density
— Data transfer density/BW
— Coherent memory space

* Thus there is a need to port computational science codes to heterogeneous
systems. This requires algorithm rethinking and code reengineering in order to fully
exploit next generation of heterogeneous architectures.

» Today's showcase #1: electronic structure code CPMD
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OpenPOWER EcoSystem HES ]

» POWER-optimized libraries & compilers

— Advanced toolchain

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W51a7ffcf4dfd 4b40 9d82 446ebc23c550/page/IBM%20Advance%20Toolchain%2
Ofor%20PowerLinux%20Documentation

— XL-compilers

https://www.ibm.com/developerworks/community/groups/community/xlpower/

— ESSL

https://www-03.ibm.com/systems/power/software/essl/

» GPU optimization
— CUDA

— CUDNN
— openGL

= PowerAl
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Agenda HEE

» Porting a complex application: CPMD

— Introduction

— Refactoring the code
— Compiling the code
— Assigning
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Car—Parrinello Molecular Dynamics: CPMD

» Shown to scale to very large systems

* Numerous showcases, eg, Li-Air batteries

Simwations of Li,Q, in Propylenecarbonate,
T. Laino, A. Curioni, A New Piece in the
Puzzie af Lithivwm/Air Batteries, Chemisiry,
Thursday, November 8, 2018
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Introduction: Kohn—Sham equations S35

Observation:

» Each iteration step require at least
N x 3D FFT (inverse/forward)

We focused on:
» Construction of the electronic density

* Applying the potential to the
wavefunctions

= Orthogonalization of the wavefunctions / 0i(r)¢;(r)d’r = 0y

Thursday, November 8, 2018 IBM Zurich Research Lab 13



Parallelization: Distributed Memory and 3D FFT ]

- invEET
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Limited Scalability in Standard 3D FFT HES ]

Each processor takes a number of whole planes ...

... very good scheme for small — medium sized
computational platforms

... but observe that scalabillity is limited by the
number of planes across the Z-direction!

... which is in the order of a few hundred

Thus: not appropriate for a massively parallel y

system i
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3D FFTs Using Task Groups S

= Loop across the number of electrons.

p(r) = Z Wz(”")|2 Each iteration requires 1 3D FFT.
oL » Hierarchical parallelism*: Assign to each

Task Group a number of iterations

ALLTOALL

EIG 1: PROCS 1-2 EIG 2: PROCS 1-2
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3D FFTs Using Task Groups B

= task groups of processors will work on different eigenstates concurrently

* number of processors per group: Ideally the one that achieves the best scalability
for the original parallel 3D FFT scheme

EIG 1: ONLY PROC 1 EIG 2: ONLY PROC 2
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O, (r) = 111\FFT( (G))

At

* The reverse Fourier transform of the
N states @(G) is distributed over the
NS streams that work concurrently.

» Each stream is assigned to a CPU
thread.

» Each stream transforms a state @(G)
to the corresponding density (1D FFT
—all2all — 2D FFT)
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GPU Porting: Applying the potential to the wavefunctions iEn:

* The reverse and forward Fourier
transforms as well as the application
of the potential V to the N states are
distributed over NS streams that work
concurrently.

= Each stream is assigned to a CPU V(r)o;(r)
thread.

» Each stream transforms a state ¢(G)
to o(r) (1D FFT — all2all — 2D FFT). — o
The potential is applied and the result (Vi) (G) =FFT((V ()z)(r))
back transformed (2D FFT — all2all —
1D FFT).

0;(r) = invFFT(¢;(G))
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GPU Porting: Orthogonalization via block Gram-Schmidt i=as

= we seek the orthogonalized coefficient matrix C' = ortho(C)

* the coefficients of the expansion of ¢(G) on the
plane-wave basis is block-partitioned column-
wise into n blocks of size b. Chye Gy, Cor Oy

» the block Gram—-Schmidt scheme loops over
the n blocks Ci and orthogonalizes them one C; = ortho((I — Y02} ¢,CTYC;)
after the other L
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GPU Porting: Orthogonalization via block Gram-Schmidt B

[él, s » @ .‘éj_lch.-. ¢ .. an]

C; = ortho((I — 2’1;11 C’jéjT)Cz)

BLAS (1 stream)
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GPU Porting: Orthogonalization via block Gram-Schmidt B

Two streams take care of D2H and H2D communication, respectively.

]
]

Civ1 Ci_q
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GPU Porting: Orthogonalization via block Gram-Schmidt B

Ci41 = ortho((I — Z} 100 )Cit1)

S

Cive C;

Sillinii Sl

L) L) E

BLAS op time
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Agenda

= Recall: openPOWER for HPC - differentiating features
= Porting a complex application: CPMD
» Porting a scalable benchmark: HPCG
= Porting a cloud benchmark: SNAP-ML

= HPC application porting: Trends
— Libraries
— Containerization
— Jupyter
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HPCG Benchmark: Introduction IEE

* hpcg-benchmark.org

» High Performance Conjugate Gradient (HPCQG).
» Solves Ax=Db, A large, sparse, b known, x computed.

* An optimized implementation of PCG contains essential computational and
communication patterns that are prevalent in a variety of methods for
discretization and numerical solution of PDEs

= Patterns:

— Dense and sparse computations.

— Dense and sparse collective.

— Multi-scale execution of kernels via MG (truncated) V cycle.

— Data-driven parallelism (unstructured sparse triangular solves).

» Strong verification and validation properties (via spectral properties of PCG).
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HPC Benchmark: POWER9 results T=Es
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= Porting a scalable benchmark: HPCG
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Snap Machine Learning: Principles 4]

Model training time may dominate Snap
time to insight in several cases: s ML s
A. | IS ne.eded, v Large-scale data. v Small/medium scale
to adapt to events in real time v'  Distributed training data.
B r v GPU acceleration. v Single node training
e v' Spark** + MPI APIs v GPU acceleration.
v

iIngested per day

Sklearn-c tible API.
C. eq
are needed for best accuracy

ThuSmajovMacieirte Learning: ultra-fast traineMguoth Meamedels, scalable to very large datasets 28

o>




3 Key Breakthroughs TEE5

Dynamic Optimized Efficient Cluster

GPU Acceleration Memory Management Scaling

S8asss
m =) 5000
000000

000000
Power9 CPU V100 GPU
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Tera-scale Computational Advertising Application Sl

Criteo Releases Industry’s Largest-Ever Dataset
for Machine Learning to Academic Community

New York - June 18, 2015 - Criteo (NASDAQ: CRTO), the performance
marketing technology company, today announced the release of the largest
public machine learning dataset ever issued to the open source community,
with the goal of supporting academic research and innovation in

distributed machine learning algorithms.

Sparse data

matrix
2.3TB

Train:

Inference:
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Snap ML: Tera-scale ML benchmark

Criteo Terabyte Click Logs Benchmark

~
o

I
____ 46x faster

Runtinge (mingtes) o

\4

Tensorflow (Google Cloud) snap ML (IBM Power)

% https://cloud.google.com/blog/big-data/2017/02/using-

google-cloud-machine-learning-to-predict-clicks-at-
scale

Comparison of Tensorflow** on Google Cloud
with SNAP ML on POWER9* (AC922) cluster

Workload: Click-through-rate prediction for
computational advertising, using Logistic
Regression

Dataset: Criteo Terabyte Click Logs
(http://labs.criteo.com/2013/12/download-

terabyte-click-logs/)

Dataset: 4.2 billion training examples, 1 million features
Model:
Test LogLoss: 0.1293 (Tensorflow), 0.1292 (snap ML)

Platform: 89 machines (Tensorflow),
(snap ML)
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Snap ML single-GPU performance B

Limited by GPU memory bandwidth (V100)
38.5x fag

Limited by data transfer to GPU (PCle)

0 25 50 75 100 125 150 175
Training Time [s]
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Profile (Intel x86** + Tesla™ V100 + PCle Gen3) B

Train chunk Train chunk
(i) on GPU (i+1) on GPU

Copy chunk Copy chunk
(i+1) onto GPU | (i+2) onto GPU

Each iteration takes 330ms and the bottleneck is the time to copy next chunk onto GPU
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Profile (Power9* + Tesla™ V100 + NVLINK 2.0) S

Train chunk ... Train chunk Train chunk Train chunk Train chunk |
' (i+1) on GPU (i+2) on GPU (i+3) on GPU (i+4) on GPU —’

Copy chunk JEEEM Copy chunk [l Copy chunk S Copy chunk SN Copy chunk [
(i+1) onto g (i+2) onto (i+3) onto g (i+4) onto o (i+5) onto e
GPU GPU GPU GPU GPU i

Copy time completely hidden = Each iteration takes 93ms (3.5x faster)
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Agenda TDas

= Recall: openPOWER for HPC - differentiating features
= Porting a complex application: CPMD
= Porting a scalable benchmark: HPCG
= Porting a cloud benchmark: SNAP-ML

» HPC application porting: Trends
— Libraries
— Containerization
— Jupyter
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HPC Applications: Reference Architecture PER:

DSX Anaconda \

Core DL Frameworks Community DL Frameworks Sgallz ML
: _ it -
Tensorilo:: F?:m.:_ly (Vr\:{k Keras) TF, Catfe, PVT';Lcr'::’hﬁ'.‘_a'“er’ Theano, ,_e:'m', MLLib Graphx | R | xghboost
affe, PyTorc \ \

IBM Cloud Private IBM Public Cloud
Kubernetes

Spectrum Scale IBM COS
P9 Newell + Volta GPU \ IBM COS m
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HPC Application Porting: Trends B

= DEMO
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