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Agenda

§ Recall: openPOWER for HPC - differentiating features

§ Porting a complex application: CPMD

§ Porting a scalable benchmark: HPCG

§ Porting a cloud benchmark: SNAP-ML

§ HPC application porting: Trends
– Libraries

– Containerization

– Jupyter
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AC922: IBM POWER9 for HPC
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AC922: GPU options
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AC922 w/ 4 GPUs
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Power 9 Processor (2x)

• 18, 22C water cooled

• 16, 20C air cooled

PCIe slot (4x)

• Gen4 PCIe

• 2, x16 HHHL Adapter

• 1, Shared slot

• 1 x8 HHHL Adapter

Memory DIMM’s 

(16x)

• 8 DDR4 IS DIMMs 

per socket

• 8, 16, 32,64, 128GB 

DIMMs

NVidia Volta GPU

• 2 per socket

• SXM2 form factor

• 300W

• NVLink 2.0 

• Air Cooled

Power Supplies (2x)

• 2200W 

• 200VAC, 277VAC, 

400VDC input

BMC Card

• IPMI

• 1 Gb Ethernet

• VGA

• 1 USB 3.0
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AC922: POWER9 IO & Accelerator BW

Extreme Accelerator Bandwidth and 

Reduced Latency

– PCIe Gen 4 x 48 lanes –

192 GB/s peak bandwidth (duplex)

– IBM BlueLink 25Gb/s x 48 lanes –
300 GB/s peak bandwidth (duplex)

Coherent Memory and Virtual Addressing 

Capability for all Accelerators

– CAPI 2.0 - 4x bandwidth of POWER8 using 

PCIe Gen 4

– NVLink 2.0 – Next generation of GPU/CPU 

bandwidth and integration using BlueLink

– OpenCAPI – High bandwidth, low latency and 
open interface using BlueLink
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Agenda

§ Recall: openPOWER for HPC - differentiating features

§ Porting a complex application: CPMD

§ Porting a scalable benchmark: HPCG

§ Porting a cloud benchmark: SNAP-ML

§ HPC application porting: Trends
– Libraries

– Containerization

– Jupyter
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Porting a Complex HPC Application to POWER + GPUs

§ Heterogeneous systems (eg, CPU/GPU) are key to reach exascale

§ OpenPOWER systems combining CPUs and GPUs address key issues on the road 

to scalable acceleration

– Compute density

– Data transfer density/BW

– Coherent memory space

§ Thus there is a need to port computational science codes to heterogeneous 

systems. This requires algorithm rethinking and code reengineering in order to fully 

exploit next generation of heterogeneous architectures.

§ Today's showcase #1: electronic structure code CPMD
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OpenPOWER EcoSystem

§ POWER-optimized libraries & compilers

– Advanced toolchain
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W51a7ffcf4dfd_4b40_9d82_446ebc23c550/page/IBM%20Advance%20Toolchain%2
0for%20PowerLinux%20Documentation

– XL-compilers
https://www.ibm.com/developerworks/community/groups/community/xlpower/

– ESSL
https://www-03.ibm.com/systems/power/software/essl/

§ GPU optimization

– CUDA

– CUDNN

– openGL

§ PowerAI
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Agenda

§ (open)POWER for HPC: differentiating features

§ Porting a complex application: CPMD
– Introduction

– Refactoring the code

– Compiling the code

– Assigning 

AI / Machine Learning

§ Dense Storage

§ Conclusion
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Car–Parrinello Molecular Dynamics: CPMD

§ Shown to scale to very large systems

§ Numerous showcases, eg, Li-Air batteries
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Introduction: Kohn–Sham equations

Observation:

§ Each iteration step require at least 

N x 3D FFT (inverse/forward)

We focused on:

§ Construction of the electronic density

§ Applying the potential to the 
wavefunctions

§ Orthogonalization of the wavefunctions
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Parallelization: Distributed Memory and 3D FFT
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Limited Scalability in Standard 3D FFT

Thursday, November 8, 2018 15

Each processor takes a number of whole planes …

… very good scheme for small – medium sized 

computational platforms 

… but observe that scalability is limited by the 

number of planes across the Z-direction! 

... which is in the order of a few hundred

Thus: not appropriate for a massively parallel 

system
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3D FFTs Using Task Groups

§ Loop across the number of electrons. 

Each iteration requires 1 3D FFT.

§ Hierarchical parallelism*: Assign to each 

Task Group a number of iterations
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3D FFTs Using Task Groups

§ task groups of processors will work on different eigenstates concurrently

§ number of processors per group: Ideally the one that achieves the best scalability 

for the original parallel 3D FFT scheme 
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GPU Porting: Construction of the electronic density

§ The reverse Fourier transform of the 

N states φ(G) is distributed over the 

NS streams that work concurrently.

§ Each stream is assigned to a CPU 

thread.

§ Each stream transforms a state φ(G) 

to the corresponding density (1D FFT 

– all2all – 2D FFT)
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GPU Porting: Applying the potential to the wavefunctions

§ The reverse and forward Fourier 

transforms as well as the application 

of the potential V to the N states are 

distributed over NS streams that work 

concurrently.

§ Each stream is assigned to a CPU 

thread.

§ Each stream transforms a state φ(G) 

to φ(r) (1D FFT – all2all – 2D FFT). 

The potential is applied and the result 

back transformed (2D FFT – all2all –

1D FFT).
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GPU Porting: Orthogonalization via block Gram-Schmidt

§ we seek the orthogonalized coefficient matrix

§ the coefficients of the expansion of φ(G) on the 

plane-wave basis is block-partitioned column-

wise into n blocks of size b.

§ the block Gram–Schmidt scheme loops over 

the n blocks Ci and orthogonalizes them one 

after the other
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GPU Porting: Orthogonalization via block Gram-Schmidt
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GPU Porting: Orthogonalization via block Gram-Schmidt
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GPU Porting: Orthogonalization via block Gram-Schmidt
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Agenda

§ Recall: openPOWER for HPC - differentiating features

§ Porting a complex application: CPMD

§ Porting a scalable benchmark: HPCG

§ Porting a cloud benchmark: SNAP-ML

§ HPC application porting: Trends
– Libraries

– Containerization

– Jupyter
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HPCG Benchmark: Introduction

§ hpcg-benchmark.org

§ High Performance Conjugate Gradient (HPCG).

§ Solves Ax=b, A large, sparse, b known, x computed.

§ An optimized implementation of PCG contains essential computational and 

communication patterns that are prevalent in a variety of methods for 

discretization and numerical solution of PDEs

§ Patterns:
– Dense and sparse computations.

– Dense and sparse collective.

– Multi-scale execution of kernels via MG (truncated) V cycle.

– Data-driven parallelism (unstructured sparse triangular solves).

§ Strong verification and validation properties (via spectral properties of PCG).
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HPC Benchmark: POWER9 results
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Agenda

§ Recall: openPOWER for HPC - differentiating features

§ Porting a complex application: CPMD

§ Porting a scalable benchmark: HPCG

§ Porting a cloud benchmark: SNAP-ML

§ HPC application porting: Trends
– Libraries

– Containerization

– Jupyter
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Snap Machine Learning: Principles

Model training time may dominate 

time to insight in several cases:

A. frequent re-training is needed, 

to adapt to events in real time

B. many TB’s of data are 

ingested per day

C. large ensembles of models 

are needed for best accuracy

Data 
Ingestion

Cleaning
Feature

Extraction

Train Model 1 

Train Model 2 

Train Model N 

Evaluation / 
Selection

…

Data 
Sources

Insight

Time to insight

Automated, cloud-based deployment

Modular architecture that leverages 
existing ML and analytics services

snap.ml.distributed

ü Large-scale data.
ü Distributed training
ü GPU acceleration.
ü Spark** + MPI APIs

Snap 
ML snap.ml.local

ü Small/medium scale 
data.

ü Single node training

ü GPU acceleration.
ü Sklearn-compatible API.

Snap Machine Learning: ultra-fast training of ML models, scalable to very large datasetsThursday, November 8, 2018 28
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3 Key Breakthroughs

29

V100 GPUPower9 CPU

GPU Acceleration
Dynamic Optimized

Memory Management
Efficient Cluster

Scaling

System

Memory

Power 9 

CPU
V100 GPU

GPU

Memory

§ C. Duenner, S. Forte, M. Takac, and M. Jaggi. "Primal-Dual Rates and Certificates." In International Conference on Machine Learning (ICML 
2016), pp. 783-792. 2016.

§ T. Parnell, C. Duenner, K. Atasu, M. Sifalakis and H. Pozidis, "Large-scale stochastic learning using GPUs," 2017 IEEE International Parallel and 
Distributed Processing Symposium Workshops (IPDPSW), Lake Buena Vista, FL, 2017, pp. 419-428.

§ C. Duenner, T. Parnell, K. Atasu, M. Sifalakis and H. Pozidis, “Understanding and Optimizing the Performance of Distributed Machine Learning 
Applications on Apache Spark”, poster presentation at NIPS 2016 ML Systems workshop, IEEE Big Data 2017

§ C. Duenner, T. Parnell, M. Jaggi, “Efficient Use of Limited-Memory Resources to Accelerate Linear Learning”, proceedings of 2017 Neural 
Information Processing Systems (NIPS 2017)
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Tera-scale Computational Advertising Application

+1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

+1

-1

-1

-1

-1

-1

-1

+1

-1

4.2 billion 

examples

1 million 

features

Goal: Predict whether a user will click on a given advert 
based on an anonymized set of features.

Train: Fit model parameters using 4.2 billion examples.

Inference: Evaluate model on 180 million unseen 
examples.

+1 – click

-1 – no click

Sparse data 
matrix

2.3TB

labels

Criteo Labs. 2015. Criteo Releases Industry�s Largest-Ever Dataset for Machine Learning to Academic 

Community. h�ps://www.criteo.com/news/press-releases/2015/07/criteo-releases-industrys-largest-ever-

dataset/

*

*
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Snap ML: Tera-scale ML benchmark

Dataset: 4.2 billion training examples, 1 million features
Model: Logistic Regression

Test LogLoss: 0.1293 (Tensorflow), 0.1292 (snap ML)
Platform: 89 machines (Tensorflow), 

8 Power9 CPUs+16 NVIDIA® Tesla™ V100 GPUs (snap ML)
https://cloud.google.com/blog/big-data/2017/02/using-
google-cloud-machine-learning-to-predict-clicks-at-

scale

*

Comparison of Tensorflow** on Google Cloud 

with SNAP ML on POWER9* (AC922) cluster

Workload: Click-through-rate prediction for 

computational advertising, using Logistic 

Regression

Dataset: Criteo Terabyte Click Logs 
(http://labs.criteo.com/2013/12/download-

terabyte-click-logs/)
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Snap ML single-GPU performance

Snap ML on PCI-Gen3 vs. NVLINK CPU-GPU link

Dataset: 200 million training examples, 1 million features
Model: Logistic Regression

Test LogLoss: 0.131 (in all cases)
Platform: Single node experiment. 1x NVIDIA Tesla V100 GPU

PCIe-Gen3: Intel(R) Xeon(R) Gold 6150 CPU 
(SkyLake)

NVLink2.0:  Power9 CPU (AC922 server)

3.5x faster

Limited by data transfer to GPU (PCIe)

Limited by GPU memory bandwidth (V100)

0 25 50 75 100 125 150 175

Training Time [s]

PCIe-Gen3

NVLINK 2.0
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Profile (Intel x86** + Tesla™ V100 + PCIe Gen3)

Train chunk
(i) on GPU

Copy chunk
(i+1) onto GPU

90ms

318ms

S1 Init

12ms

330ms

S2

Train chunk
(i+1) on GPU

Copy chunk
(i+2) onto GPU

90ms

318ms

Init

12ms

330ms

Each iteration takes 330ms and the bottleneck is the time to copy next chunk onto GPU
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Profile (Power9* + Tesla™ V100 + NVLINK 2.0)

Train chunk
(i) on GPU

Copy chunk
(i+1) onto 

GPU

90ms

55ms

S1 Init

3ms

93ms

S2

Train chunk
(i+1) on GPU

Copy chunk
(i+2) onto 

GPU

90ms

55ms

Init

3ms

93ms

Train chunk
(i+2) on GPU

Copy chunk
(i+3) onto 

GPU

90ms

55ms

Init

3ms

93ms

Train chunk
(i+3) on GPU

Copy chunk
(i+4) onto 

GPU

90ms

55ms

Init

3ms

93ms

Train chunk
(i+4) on GPU

Copy chunk
(i+5) onto 

GPU

90ms

55ms

Init

3ms

93ms

Copy time completely hidden à Each iteration takes 93ms (3.5x faster)
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Agenda

§ Recall: openPOWER for HPC - differentiating features

§ Porting a complex application: CPMD

§ Porting a scalable benchmark: HPCG

§ Porting a cloud benchmark: SNAP-ML

§ HPC application porting: Trends
– Libraries

– Containerization

– Jupyter
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Hardware Layer

Data Layer

DL Frameworks
ML Libraries

ML/DL 
UI and Flow

Data Science Apps
Value-add Tools

Spectrum Scale

DSX Anaconda

P9 Newell + Volta GPU

Data Prep  … Parallel Training  … Model Tuning  … Model Evaluation  … Inference Services

Deep Learning Impact

DLaaS

IBM COS

IBM ESS 

HPC Applications: Reference Architecture

36

Core DL Frameworks
Tensorflow Family (w/ Keras)

Caffe, PyTorch*
MLLib Graphx R xgboost

Snap ML
Scikit-

Learn, …

Community DL Frameworks
TF, Caffe, PyTorch, Chainer, Theano, 

Torch,… 

Runtimes:
Resource / WL
Managers

Runtimes: Resource / 
WL managers

IBM Cloud Private
Kubernetes

IBM Public Cloud

IBM COS
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HPC Application Porting: Trends

§ DEMO
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But be willing take incremental steps when you can!


