000860155 001__ 860155
000860155 005__ 20240708132904.0
000860155 037__ $$aFZJ-2019-00941
000860155 1001_ $$0P:(DE-Juel1)161444$$aLobe, Sandra$$b0$$eCorresponding author$$ufzj
000860155 1112_ $$aBatterieforum Deutschland$$cBerlin$$d2018-01-24 - 2018-01-26$$wGermany
000860155 245__ $$aThin film electrolytes for all-solid-state lithium batteries by sputter deposition
000860155 260__ $$c2018
000860155 3367_ $$033$$2EndNote$$aConference Paper
000860155 3367_ $$2BibTeX$$aINPROCEEDINGS
000860155 3367_ $$2DRIVER$$aconferenceObject
000860155 3367_ $$2ORCID$$aCONFERENCE_POSTER
000860155 3367_ $$2DataCite$$aOutput Types/Conference Poster
000860155 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1552990778_19633$$xAfter Call
000860155 520__ $$aCurrent battery research and development is focused on cells with high energy density as well as high inherent safety. One approach to reach both goals at the same time is a battery concept including a mixed cathode, a solid-state thin film electrolyte and a lithium metal anode. Lithium-stuffed garnets, like Li7La3Zr2O12 (LLZ), are promising electrolyte materials due to their high ionic conductivity and chemical and electrochemical stability with Lithium and common cathode materials, e.g. LiCoO2. However, the co-sintering of garnets with cathode material is impeded by the low thermal stability of these mixtures (e.g. <700°C for LiCoO2, <600°C for 5 V lithium manganese based spinels). Well-defined interfaces can be obtained, when the electrolyte is processed via gas phase at significant lower temperatures than in co-sintering processes.  In a previous study we showed that single-phase LLZ thin films with a Li-ion conductivity of 1.2x10-4 S cm-1 can be formed by a sputter deposition process at 700°C. However, this deposition temperature leads to interphase formation with the used substrate material.In order to avoid detrimental diffusion and reaction during deposition, our approach concentrates on the reduction of substrate temperature by careful adjustment of the process parameters. Furthermore, the microstructure of the thin films has to be optimized, so that the Li-ion conductivity can be maximized. Therefore, post-annealing in different atmospheres was applied, too. As a major result we will show the deposition of garnet-structured thin films at around 400°C. The integration of garnet electrolytes in all-solid-state lithium batteries is facilitated by this low deposition temperature. That means, even electrodes, that show a low thermal stability, like e.g. high-voltage spinel materials, could be used as substrate for deposition of garnet electrolytes.
000860155 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000860155 7001_ $$0P:(DE-Juel1)158085$$aDellen, Christian$$b1$$ufzj
000860155 7001_ $$0P:(DE-Juel1)165951$$aWindmüller, Anna$$b2$$ufzj
000860155 7001_ $$0P:(DE-Juel1)156244$$aTsai, Chih-Long$$b3$$ufzj
000860155 7001_ $$0P:(DE-Juel1)139534$$aMöller, Sören$$b4$$ufzj
000860155 7001_ $$0P:(DE-Juel1)159368$$aSohn, Yoo Jung$$b5$$ufzj
000860155 7001_ $$0P:(DE-Juel1)129662$$aSebold, Doris$$b6$$ufzj
000860155 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, Martin$$b7$$ufzj
000860155 7001_ $$0P:(DE-Juel1)171780$$aFattakhova-Rohlfing, Dina$$b8$$ufzj
000860155 7001_ $$0P:(DE-Juel1)129580$$aUhlenbruck, Sven$$b9$$ufzj
000860155 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b10$$ufzj
000860155 909CO $$ooai:juser.fz-juelich.de:860155$$pVDB
000860155 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161444$$aForschungszentrum Jülich$$b0$$kFZJ
000860155 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158085$$aForschungszentrum Jülich$$b1$$kFZJ
000860155 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165951$$aForschungszentrum Jülich$$b2$$kFZJ
000860155 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156244$$aForschungszentrum Jülich$$b3$$kFZJ
000860155 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)139534$$aForschungszentrum Jülich$$b4$$kFZJ
000860155 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159368$$aForschungszentrum Jülich$$b5$$kFZJ
000860155 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129662$$aForschungszentrum Jülich$$b6$$kFZJ
000860155 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145623$$aForschungszentrum Jülich$$b7$$kFZJ
000860155 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171780$$aForschungszentrum Jülich$$b8$$kFZJ
000860155 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129580$$aForschungszentrum Jülich$$b9$$kFZJ
000860155 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b10$$kFZJ
000860155 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000860155 9141_ $$y2019
000860155 920__ $$lyes
000860155 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000860155 980__ $$aposter
000860155 980__ $$aVDB
000860155 980__ $$aI:(DE-Juel1)IEK-1-20101013
000860155 980__ $$aUNRESTRICTED
000860155 981__ $$aI:(DE-Juel1)IMD-2-20101013