001     860155
005     20240708132904.0
037 _ _ |a FZJ-2019-00941
100 1 _ |a Lobe, Sandra
|0 P:(DE-Juel1)161444
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Batterieforum Deutschland
|c Berlin
|d 2018-01-24 - 2018-01-26
|w Germany
245 _ _ |a Thin film electrolytes for all-solid-state lithium batteries by sputter deposition
260 _ _ |c 2018
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1552990778_19633
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Current battery research and development is focused on cells with high energy density as well as high inherent safety. One approach to reach both goals at the same time is a battery concept including a mixed cathode, a solid-state thin film electrolyte and a lithium metal anode. Lithium-stuffed garnets, like Li7La3Zr2O12 (LLZ), are promising electrolyte materials due to their high ionic conductivity and chemical and electrochemical stability with Lithium and common cathode materials, e.g. LiCoO2. However, the co-sintering of garnets with cathode material is impeded by the low thermal stability of these mixtures (e.g. <700°C for LiCoO2, <600°C for 5 V lithium manganese based spinels). Well-defined interfaces can be obtained, when the electrolyte is processed via gas phase at significant lower temperatures than in co-sintering processes. In a previous study we showed that single-phase LLZ thin films with a Li-ion conductivity of 1.2x10-4 S cm-1 can be formed by a sputter deposition process at 700°C. However, this deposition temperature leads to interphase formation with the used substrate material.In order to avoid detrimental diffusion and reaction during deposition, our approach concentrates on the reduction of substrate temperature by careful adjustment of the process parameters. Furthermore, the microstructure of the thin films has to be optimized, so that the Li-ion conductivity can be maximized. Therefore, post-annealing in different atmospheres was applied, too. As a major result we will show the deposition of garnet-structured thin films at around 400°C. The integration of garnet electrolytes in all-solid-state lithium batteries is facilitated by this low deposition temperature. That means, even electrodes, that show a low thermal stability, like e.g. high-voltage spinel materials, could be used as substrate for deposition of garnet electrolytes.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
700 1 _ |a Dellen, Christian
|0 P:(DE-Juel1)158085
|b 1
|u fzj
700 1 _ |a Windmüller, Anna
|0 P:(DE-Juel1)165951
|b 2
|u fzj
700 1 _ |a Tsai, Chih-Long
|0 P:(DE-Juel1)156244
|b 3
|u fzj
700 1 _ |a Möller, Sören
|0 P:(DE-Juel1)139534
|b 4
|u fzj
700 1 _ |a Sohn, Yoo Jung
|0 P:(DE-Juel1)159368
|b 5
|u fzj
700 1 _ |a Sebold, Doris
|0 P:(DE-Juel1)129662
|b 6
|u fzj
700 1 _ |a Finsterbusch, Martin
|0 P:(DE-Juel1)145623
|b 7
|u fzj
700 1 _ |a Fattakhova-Rohlfing, Dina
|0 P:(DE-Juel1)171780
|b 8
|u fzj
700 1 _ |a Uhlenbruck, Sven
|0 P:(DE-Juel1)129580
|b 9
|u fzj
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 10
|u fzj
909 C O |o oai:juser.fz-juelich.de:860155
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161444
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)158085
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165951
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)156244
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)139534
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)159368
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129662
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)145623
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)171780
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)129580
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21