000860156 001__ 860156
000860156 005__ 20240708133138.0
000860156 0247_ $$2doi$$a10.1016/j.jpowsour.2019.05.072
000860156 0247_ $$2ISSN$$a0378-7753
000860156 0247_ $$2ISSN$$a1873-2755
000860156 0247_ $$2WOS$$aWOS:000480670200002
000860156 037__ $$aFZJ-2019-00942
000860156 082__ $$a620
000860156 1001_ $$0P:(DE-Juel1)171824$$aSchäfer, Dominik$$b0$$eCorresponding author$$ufzj
000860156 245__ $$aSyngas Production Performance and Degradation Analysis of a Solid Oxide Electrolyzer Stack
000860156 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2019
000860156 3367_ $$2DRIVER$$aarticle
000860156 3367_ $$2DataCite$$aOutput Types/Journal article
000860156 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1573222227_10741
000860156 3367_ $$2BibTeX$$aARTICLE
000860156 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860156 3367_ $$00$$2EndNote$$aJournal Article
000860156 520__ $$aA short stack of the Jülich F10 design with anode-supported cells (ASCs; in fuel cell mode), based on the Jülich design with a lanthanum strontium cobalt ferrite (LSCF) air electrode, was employed for a medium-term co-electrolysis operation in technically-relevant conditions at 800 °C. The feed and product gases for an identically-constructed stack under the same conditions were monitored by a process-grade gas analysis system analyzing all relevant gases, including water per direct measurement. The product gas composition conforms to the expectation based on electrolysis and the reverse water-gas shift (RWGS) reaction for a wide range of conversion ratios. The formation of methane as a by-product is discussed. The degradation for stationary phases of the experiment amounted to ∼2% kh−1 (voltage degradation) and 4% kh−1 (based on area specific resistance (ASR)), respectively. Based on the evaluation of electrochemical impedance spectra and post-mortem analyses, the degradation is induced by the depletion of nickel near the electrolyte interface which must be urgently resolved. A hypothesis for an electrochemical mechanism is postulated that complements existing theories. The mass transport contributes the most to the total impedance and the porosity in our cathodes should be optimized for electrolysis mode.
000860156 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000860156 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000860156 588__ $$aDataset connected to CrossRef
000860156 7001_ $$0P:(DE-Juel1)145945$$aFang, Qingping$$b1$$ufzj
000860156 7001_ $$0P:(DE-Juel1)129828$$aBlum, Ludger$$b2$$ufzj
000860156 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b3$$ufzj
000860156 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2019.05.072$$gVol. 433, p. 126666 -$$p126666 -$$tJournal of power sources$$v433$$x0378-7753$$y2019
000860156 909CO $$ooai:juser.fz-juelich.de:860156$$pVDB
000860156 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171824$$aForschungszentrum Jülich$$b0$$kFZJ
000860156 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145945$$aForschungszentrum Jülich$$b1$$kFZJ
000860156 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129828$$aForschungszentrum Jülich$$b2$$kFZJ
000860156 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b3$$kFZJ
000860156 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b3$$kRWTH
000860156 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000860156 9141_ $$y2019
000860156 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2017
000860156 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860156 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860156 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000860156 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860156 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860156 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860156 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860156 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860156 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860156 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860156 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000860156 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2017
000860156 920__ $$lyes
000860156 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000860156 980__ $$ajournal
000860156 980__ $$aVDB
000860156 980__ $$aI:(DE-Juel1)IEK-3-20101013
000860156 980__ $$aUNRESTRICTED
000860156 981__ $$aI:(DE-Juel1)ICE-2-20101013