000860158 001__ 860158
000860158 005__ 20240708132904.0
000860158 037__ $$aFZJ-2019-00944
000860158 1001_ $$0P:(DE-Juel1)161444$$aLobe, Sandra$$b0$$eCorresponding author$$ufzj
000860158 1112_ $$aKraftwerk Batterie$$cMünster$$d2018-04-10 - 2018-04-11$$wGermany
000860158 245__ $$aThin film electrolytes for all-solid-state lithium batteries by sputter deposition
000860158 260__ $$c2018
000860158 3367_ $$033$$2EndNote$$aConference Paper
000860158 3367_ $$2BibTeX$$aINPROCEEDINGS
000860158 3367_ $$2DRIVER$$aconferenceObject
000860158 3367_ $$2ORCID$$aCONFERENCE_POSTER
000860158 3367_ $$2DataCite$$aOutput Types/Conference Poster
000860158 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1552989598_19633$$xAfter Call
000860158 520__ $$aAll-solid-state lithium batteries can outperform the energy densities of state-of-the-art Li-ion batteries with liquid electrolyte if the electrolyte is applied as a thin film. Promising electrolyte materials are garnet-structured oxides like Li7La3Zr2O12 due to their high ionic conductivity and their high chemical and electrochemical stability with lithium metal anodes as well as different cathode materials. Considerations about thermodynamic stabilities play an important role during ceramic processing and thin film manufacturing. Most cathode materials react at comparatively low temperature (<600°C-700°C) with garnet materials. Thus, this critical temperature must not be exceeded during deposition. Furthermore, diffusion of elements from the substrate into the thin film and vice versa has to be avoided. Therefore, garnet thin films were already synthesized by different groups with different wet-chemical as well as chemical and physical vapor deposition methods. Nevertheless, complete thin film batteries with garnet electrolyte were not realized yet. In this presentation we show how material optimization and thin film processing of garnet materials can alleviate the problems concerning the high reactivity of the components. All thin films were made by radio frequency sputter deposition. An important key parameter is the substrate temperature during the deposition process which has to be adjusted carefully in order to optimize the electrochemical properties of the deposited thin films on a particular substrate. The Li-ion conductivity of the thin films is highly influenced by the microstructure and thus by the growth mechanism of the thin film. Therefore, the substrate temperature has to be high enough to achieve a proper crystallinity. On the other hand, a lower deposition temperature leads to less chemical reaction and interdiffusion. Post-annealing approaches in order to circumvent this dilemma will be presented, too. The deposited electrolyte thin films and half cells are analyzed with regard to structural and morphological properties, chemical composition and element distribution, and finally their electrochemical behavior.
000860158 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000860158 7001_ $$0P:(DE-Juel1)158085$$aDellen, Christian$$b1$$ufzj
000860158 7001_ $$0P:(DE-Juel1)165951$$aWindmüller, Anna$$b2$$ufzj
000860158 7001_ $$0P:(DE-Juel1)156244$$aTsai, Chih-Long$$b3$$ufzj
000860158 7001_ $$0P:(DE-Juel1)139534$$aMöller, Sören$$b4$$ufzj
000860158 7001_ $$0P:(DE-Juel1)159368$$aSohn, Yoo Jung$$b5$$ufzj
000860158 7001_ $$0P:(DE-Juel1)129662$$aSebold, Doris$$b6$$ufzj
000860158 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, Martin$$b7$$ufzj
000860158 7001_ $$0P:(DE-Juel1)171780$$aFattakhova-Rohlfing, Dina$$b8$$ufzj
000860158 7001_ $$0P:(DE-Juel1)129580$$aUhlenbruck, Sven$$b9$$ufzj
000860158 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b10$$ufzj
000860158 909CO $$ooai:juser.fz-juelich.de:860158$$pVDB
000860158 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161444$$aForschungszentrum Jülich$$b0$$kFZJ
000860158 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158085$$aForschungszentrum Jülich$$b1$$kFZJ
000860158 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165951$$aForschungszentrum Jülich$$b2$$kFZJ
000860158 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156244$$aForschungszentrum Jülich$$b3$$kFZJ
000860158 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)139534$$aForschungszentrum Jülich$$b4$$kFZJ
000860158 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159368$$aForschungszentrum Jülich$$b5$$kFZJ
000860158 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129662$$aForschungszentrum Jülich$$b6$$kFZJ
000860158 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145623$$aForschungszentrum Jülich$$b7$$kFZJ
000860158 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171780$$aForschungszentrum Jülich$$b8$$kFZJ
000860158 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129580$$aForschungszentrum Jülich$$b9$$kFZJ
000860158 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b10$$kFZJ
000860158 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000860158 9141_ $$y2019
000860158 920__ $$lyes
000860158 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000860158 980__ $$aposter
000860158 980__ $$aVDB
000860158 980__ $$aI:(DE-Juel1)IEK-1-20101013
000860158 980__ $$aUNRESTRICTED
000860158 981__ $$aI:(DE-Juel1)IMD-2-20101013