001     860158
005     20240708132904.0
037 _ _ |a FZJ-2019-00944
100 1 _ |a Lobe, Sandra
|0 P:(DE-Juel1)161444
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Kraftwerk Batterie
|c Münster
|d 2018-04-10 - 2018-04-11
|w Germany
245 _ _ |a Thin film electrolytes for all-solid-state lithium batteries by sputter deposition
260 _ _ |c 2018
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1552989598_19633
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a All-solid-state lithium batteries can outperform the energy densities of state-of-the-art Li-ion batteries with liquid electrolyte if the electrolyte is applied as a thin film. Promising electrolyte materials are garnet-structured oxides like Li7La3Zr2O12 due to their high ionic conductivity and their high chemical and electrochemical stability with lithium metal anodes as well as different cathode materials. Considerations about thermodynamic stabilities play an important role during ceramic processing and thin film manufacturing. Most cathode materials react at comparatively low temperature (<600°C-700°C) with garnet materials. Thus, this critical temperature must not be exceeded during deposition. Furthermore, diffusion of elements from the substrate into the thin film and vice versa has to be avoided. Therefore, garnet thin films were already synthesized by different groups with different wet-chemical as well as chemical and physical vapor deposition methods. Nevertheless, complete thin film batteries with garnet electrolyte were not realized yet. In this presentation we show how material optimization and thin film processing of garnet materials can alleviate the problems concerning the high reactivity of the components. All thin films were made by radio frequency sputter deposition. An important key parameter is the substrate temperature during the deposition process which has to be adjusted carefully in order to optimize the electrochemical properties of the deposited thin films on a particular substrate. The Li-ion conductivity of the thin films is highly influenced by the microstructure and thus by the growth mechanism of the thin film. Therefore, the substrate temperature has to be high enough to achieve a proper crystallinity. On the other hand, a lower deposition temperature leads to less chemical reaction and interdiffusion. Post-annealing approaches in order to circumvent this dilemma will be presented, too. The deposited electrolyte thin films and half cells are analyzed with regard to structural and morphological properties, chemical composition and element distribution, and finally their electrochemical behavior.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
700 1 _ |a Dellen, Christian
|0 P:(DE-Juel1)158085
|b 1
|u fzj
700 1 _ |a Windmüller, Anna
|0 P:(DE-Juel1)165951
|b 2
|u fzj
700 1 _ |a Tsai, Chih-Long
|0 P:(DE-Juel1)156244
|b 3
|u fzj
700 1 _ |a Möller, Sören
|0 P:(DE-Juel1)139534
|b 4
|u fzj
700 1 _ |a Sohn, Yoo Jung
|0 P:(DE-Juel1)159368
|b 5
|u fzj
700 1 _ |a Sebold, Doris
|0 P:(DE-Juel1)129662
|b 6
|u fzj
700 1 _ |a Finsterbusch, Martin
|0 P:(DE-Juel1)145623
|b 7
|u fzj
700 1 _ |a Fattakhova-Rohlfing, Dina
|0 P:(DE-Juel1)171780
|b 8
|u fzj
700 1 _ |a Uhlenbruck, Sven
|0 P:(DE-Juel1)129580
|b 9
|u fzj
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 10
|u fzj
909 C O |o oai:juser.fz-juelich.de:860158
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161444
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)158085
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165951
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)156244
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)139534
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)159368
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129662
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)145623
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)171780
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)129580
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21