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History of GPUs
50 Shaders of Gray

1999 Graphics computation pipeline implemented in dedicated graphics hardware
Computations using OpenGL graphics library [2]
»GPU« coined by NVIDIA [3]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed pipeline) and
floating-point support; 2003: DirectX 9 at ATI

2007 CUDA
2009 OpenCL
2016 Top 500: > 1/10with GPUs [4], Green 500: ≈ 2/3 of top 50 with GPUs [5]
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Status Quo Across Architectures
Performance
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Status Quo Across Architectures
Memory Bandwidth
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JURECA – Jülich’s Multi-Purpose Supercomputer
1872 nodes with Intel Xeon E5 CPUs (2× 12 cores)
75 nodes with 2 NVIDIA Tesla K80 cards (look like 4 GPUs)
JURECA Booster: 1640 nodes with Intel Xeon Phi Knights Landing
1.8 (CPU) + 0.44 (GPU) + 5 (KNL) PFLOP/s peak performance (#29)
Mellanox EDR InfiniBand
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JURONJULIA

JURON – A Human Brain Project Prototype
18 nodes with IBM POWER8NVL CPUs (2× 10 cores)
Per Node: 4 NVIDIA Tesla P100 cards, connected via NVLink
GPU: 0.38 PFLOP/s peak performance
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JUWELS – Jülich’s New Large System just went online
2500 nodes with Intel Xeon CPUs (2× 24 cores)
48 nodes with 4 NVIDIA Tesla V100 cards
10.4 (CPU) + 1.6 (GPU) + PFLOP/s peak performance
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Getting GPU-Acquainted
Some Applications

Location of Code:
1-Basics/exercises/tasks/getting_started/

See Instructions.rst for hints.

TASK
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The GPU Platform
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CPU vs. GPU
Amatter of specialties

Transporting one
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CPU vs. GPU
Chip

ALUALU

ALU ALU
Control

Cache

DRAM DRAM
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GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput
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Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA
Memory transfers need special consideration!
Do as little as possible!
Formerly: Explicitly copy data to/from GPU
Now: Done automatically (performance…?)
P100: 16 GB RAM, 720 GB/s; V100: 16 (32) GB RAM, 900 GB/s
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Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU memory

, transfer
program

2 Load GPU program, execute on SMs, get (cached) data from
memory; write back

3 Transfer results back to host memory
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GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput
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Async
Following different streams

Problem: Memory transfer is comparably slow
Solution: Do something else in meantime (computation)!

→ Overlap tasks

Copy and compute engines run separately (streams)
Copy Compute Copy Compute

Copy Compute Copy Compute

GPU needs to be fed: Schedule many computations
CPU can do other work while GPU computes; synchronization
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SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)

Simultaneous Multithreading (SMT)
GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if
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Low Latency vs. High Throughput
Maybe GPU’s ultimate feature

CPU Minimizes latency within each thread
GPU Hides latency with computations from other thread warps

CPU Core: Low Latency
T1 T2 T3 T4

GPU Streaming Multiprocessor: High Throughput
W1

W2

W3

W4
Waiting
Ready
Context Switch
Processing
Thread/Warp
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CPU vs. GPU
Let’s summarize this!

Optimized for low latency
+ Large main memory
+ Fast clock rate
+ Large caches
+ Branch prediction
+ Powerful ALU
− Relatively lowmemory bandwidth
− Cachemisses costly
− Low performance per watt

Optimized for high throughput
+ High bandwidth main memory
+ Latency tolerant (parallelism)
+ More compute resources
+ High performance per watt
− Limited memory capacity
− Low per-thread performance
− Extension card
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Programming GPUs
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Preface: CPU
A simple CPU program!

SAXPY: y⃗ = a⃗x+ y⃗, with single precision
Part of LAPACK BLAS Level 1
void saxpy(int n, float a, float * x, float * y) {

for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy(n, a, x, y);
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Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries!

W
iz
ar
d:

Br
ea
ze
ll
[1
0]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

th ano
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cuBLAS
Parallel algebra

GPU-parallel BLAS (all 152 routines)
Single, double, complex data types
Constant competition with Intel’s MKL
Multi-GPU support

→ https://developer.nvidia.com/cublas
http://docs.nvidia.com/cuda/cublas
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cuBLAS
Code example

int a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]);
cudaMallocManaged(&d_y, n * sizeof(y[0]);
cublasSetVector(n, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector(n, sizeof(y[0]), y, 1, d_y, 1);

cublasSaxpy(n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);
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cuBLAS Task
Implement amatrix-matrix multiplication

Location of code: 1-Basics/excercises/tasks/cublas/
Look at Instructions.rst for instructions

1 Implement call to double-precision GEMM of cuBLAS
2 Build with make (CUDA needs to be loaded!)
3 Run with make run

Or srun ./dgemm_um N, where N=100, 200, …
Check cuBLAS documentation for details on cublasDgemm()

JUWELS Getting Started

module load CUDA/9.1.85
salloc --partition=gpus --gres=mem192,gpu:4 -n 1
srun hostname
srun --pty --forward-x bash -i

TASK
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Programming GPUs
About CUDA Alternatives
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! Parallelism

Libraries are not enough?

You think you want to write your own GPU code?
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Primer on Parallel Scaling
Amdahl’s Law

Possible maximum speedup for
N parallel processors

Total Time t = tserial + tparallel

N Processors t(N) = ts + tp/N

Speedup s(N) = t/t(N) = ts+tp
ts+tp/N
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Parallel Portion: 50%
Parallel Portion: 75%
Parallel Portion: 90%
Parallel Portion: 95%
Parallel Portion: 99%
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! Parallelism

Parallel programming is not easy!

Things to consider:
Is my application computationally intensive enough?
What are the levels of parallelism?
Howmuch data needs to be transferred?
Is the gainworth the pain?
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Alternatives
The twilight

There are alternatives to CUDA C, which can ease the pain…
OpenACC
Thrust
PyCUDA

Other alternatives (for completeness)
CUDA Fortran
OpenMP
OpenCL
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Programming GPUs
Directives

Member of the Helmholtz Association 8 August 2018 Slide 31 44



GPU Programming with Directives
Keepin’ you portable

Annotate serial source code by directives
#pragma acc loop
for (int i = 0; i < 1; i+*) {};

Also: Generalized API functions
acc_copy();

Compiler interprets directives, creates according instructions

Pro
Portability

Other compiler? No problem! To it, it’s a
serial program
Different target architectures from same
code

Easy to program

Con
Only few compilers
Not all the raw power available
Harder to debug
Easy to programwrong
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GPU Programming with Directives
The power of… two.

OpenMP Standard for multithread programming on CPU, GPU since 4.0, better since 4.5
#pragma omp target map(tofrom:y), map(to:x)
#pragma omp teams num_teams(10) num_threads(10)
#pragma omp distribute
for ( ) {

#pragma omp parallel for
for ( ) {
// …
}

}

OpenACC Similar to OpenMP, but more specifically for GPUs
For C/C++ and Fortran
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OpenACC
Code example

void saxpy_acc(int n, float a, float * x, float * y) {
#pragma acc kernels
for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy_acc(n, a, x, y);
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OpenACC
Code example

void saxpy_acc(int n, float a, float * x, float * y) {
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OpenACC
Code example

void saxpy_acc(int n, float a, float * x, float * y) {
#pragma acc parallel loop copy(y) copyin(x)
for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy_acc(n, a, x, y);

TASK

Tommorrow!
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Programming GPUs
Thrust
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Thrust
Iterators! Iterators everywhere!

Thrust
CUDA = STL

C++
Template library
Based on iterators
Data-parallel primitives (scan(), sort(), reduce(), … )
Fully compatible with plain CUDA C (comes with CUDA Toolkit)

→ http://thrust.github.io/
http://docs.nvidia.com/cuda/thrust/
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Thrust
Code example

int a = 42;
int n = 10;
thrust::host_vector<float> x(n), y(n);
// fill x, y

thrust::device_vector d_x = x, d_y = y;

using namespace thrust::placeholders;
thrust::transform(d_x.begin(), d_x.end(), d_y.begin(), d_y.begin(), a * _1 + _2);

x = d_x;
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Thrust Task
Let’s sort some randomness

TASK

Location of code: 1-Basics/excercises/tasks/thrust/
Look at Instructions.rst for instructions

1 Sort random numbers with Thrust on CPU and GPU
2 Build with make (CUDA needs to be loaded!)
3 Run with make run

Or srun -p gpus --gres=gpu:1 ./ThrustSort

Check Thrust documentation for details on thrust::sort()
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Summary of Acceleration Possibilities

Application

Libraries Directives
Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration
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Programming GPUs
CUDA C/C++
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CUDA SAXPY
With runtime-managed data transfers

__global__ void saxpy_cuda(int n, float a, float * x, float * y) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y
cudaMallocManaged(&x, n * sizeof(float));
cudaMallocManaged(&y, n * sizeof(float));

saxpy_cuda<<<2, 5>>>(n, a, x, y);

cudaDeviceSynchronize();
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CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads

→ Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!
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CUDA API
?!?

→ Jan!
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Conclusions
…of Part 1

GPUs achieve performance by specialized hardware
Acceleration can be done by different means
Libraries are the easiest
Thrust, OpenACC can give first entry point
Full power with CUDA
CUDA parallelizes for GPUswith many threads
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Full power with CUDA
CUDA parallelizes for GPUswith many threads Thank you

for your att
ention!

a.herten@fz-juelich.de
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Appendix
Glossary
References
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Glossary I

API A programmatic interface to software by well-defined functions. Short for
application programming interface. 82, 83, 84, 106, 113

ATI Canada-based GPUsmanufacturing company; bought by AMD in 2006. 3, 4, 5, 6,
7

CUDA Computing platform for GPUs from NVIDIA. Provides, among others, CUDA
C/C++. 2, 3, 4, 5, 6, 7, 79, 80, 91, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105,
106, 107, 108, 112

JSC Jülich Supercomputing Centre, the supercomputing institute of
Forschungszentrum Jülich, Germany. 111

JURECA Amulti-purpose supercomputer with 1800 nodes at JSC. 11
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Glossary II
JURON One of the two HBP pilot system in Jülich; name derived from Juelich and

Neuron. 12, 13
JUWELS Jülich’s new supercomputer, the successor of JUQUEEN. 14, 71

NVIDIA US technology company creating GPUs. 3, 4, 5, 6, 7, 11, 12, 13, 14, 111, 112, 113,
114

NVLink NVIDIA’s communication protocol connecting CPU↔ GPU and GPU↔ GPUwith
high bandwidth. 12, 13, 113

OpenACC Directive-based programming, primarily for many-core machines. 79, 80, 85, 86,
87, 88, 89, 107, 108

OpenCL The Open Computing Language. Framework for writing code for heterogeneous
architectures (CPU, GPU, DSP, FPGA). The alternative to CUDA. 3, 4, 5, 6, 7, 79, 80
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Glossary III
OpenGL The Open Graphics Library, an API for rendering graphics across different

hardware architectures. 3, 4, 5, 6, 7
OpenMP Directive-based programming, primarily for multi-threadedmachines. 79, 80, 85

P100 A large GPUwith the Pascal architecture from NVIDIA. It employs NVLink as its
interconnect and has fast HBM2memory. 12, 13

Pascal GPU architecture from NVIDIA (announced 2016). 113
POWER CPU architecture from IBM, earlier: PowerPC. See also POWER8. 113
POWER8 Version 8 of IBM’s POWERprocessor, available also under the OpenPOWER

Foundation. 12, 13, 113

SAXPY Single-precision A× X+ Y. A simple code example of scaling a vector and adding
an offset. 57, 96
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Glossary IV
Tesla The GPU product line for general purpose computing computing of NVIDIA. 11,

12, 13, 14
Thrust A parallel algorithms library for (among others) GPUs. See

https://thrust.github.io/. 79, 80, 91, 93, 107, 108

CPU Central Processing Unit. 11, 12, 13, 14, 19, 20, 21, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 57, 85, 93, 112, 113

GPU Graphics Processing Unit. 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 58, 59, 60, 61, 62, 63, 72, 73, 81, 82, 83, 84, 85,
90, 93, 95, 107, 108, 111, 112, 113, 114

HBP Human Brain Project. 112
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Glossary V

SIMD Single Instruction, Multiple Data. 42, 43, 44, 45, 46, 47, 48, 49, 50, 51

SIMT Single Instruction, Multiple Threads. 22, 23, 24, 37, 38, 40, 41, 42, 43, 44, 45, 46,
47, 48, 49, 50, 51

SM Streaming Multiprocessor. 42, 43, 44, 45, 46, 47, 48, 49, 50, 51

SMT Simultaneous Multithreading. 42, 43, 44, 45, 46, 47, 48, 49, 50, 51
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