
CUDA INTRODUCTION PART I
GSP GPU COURSE 2018
8 August 2018 Andreas Herten Forschungszentrum Jülich

Member of the Helmholtz Association

Outline
Introduction

GPU History
Architecture Comparison
Jülich Systems
App Showcase

The GPU Platform
3 Core Features

Memory
Asynchronicity
SIMT

High Throughput
Summary

Programming GPUs
Libraries
About CUDA Alternatives
Directives
Thrust
CUDA C/C++

Member of the Helmholtz Association 8 August 2018 Slide 1 44

History of GPUs
50 Shaders of Gray

1999 Graphics computation pipeline implemented in dedicated graphics hardware
Computations using OpenGL graphics library [2]
»GPU« coined by NVIDIA [3]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed pipeline) and
floating-point support; 2003: DirectX 9 at ATI

2007 CUDA
2009 OpenCL
2016 Top 500: > 1/10with GPUs [4], Green 500: ≈ 2/3 of top 50 with GPUs [5]

Member of the Helmholtz Association 8 August 2018 Slide 2 44

History of GPUs
50 Shaders of Gray

1999 Graphics computation pipeline implemented in dedicated graphics hardware
Computations using OpenGL graphics library [2]
»GPU« coined by NVIDIA [3]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed pipeline) and
floating-point support; 2003: DirectX 9 at ATI

2007 CUDA
2009 OpenCL
2016 Top 500: > 1/10with GPUs [4], Green 500: ≈ 2/3 of top 50 with GPUs [5]

Member of the Helmholtz Association 8 August 2018 Slide 2 44

History of GPUs
50 Shaders of Gray

1999 Graphics computation pipeline implemented in dedicated graphics hardware
Computations using OpenGL graphics library [2]
»GPU« coined by NVIDIA [3]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed pipeline) and
floating-point support; 2003: DirectX 9 at ATI

2007 CUDA

2009 OpenCL
2016 Top 500: > 1/10with GPUs [4], Green 500: ≈ 2/3 of top 50 with GPUs [5]

Member of the Helmholtz Association 8 August 2018 Slide 2 44

History of GPUs
50 Shaders of Gray

1999 Graphics computation pipeline implemented in dedicated graphics hardware
Computations using OpenGL graphics library [2]
»GPU« coined by NVIDIA [3]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed pipeline) and
floating-point support; 2003: DirectX 9 at ATI

2007 CUDA
2009 OpenCL

2016 Top 500: > 1/10with GPUs [4], Green 500: ≈ 2/3 of top 50 with GPUs [5]

Member of the Helmholtz Association 8 August 2018 Slide 2 44

History of GPUs
50 Shaders of Gray

1999 Graphics computation pipeline implemented in dedicated graphics hardware
Computations using OpenGL graphics library [2]
»GPU« coined by NVIDIA [3]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed pipeline) and
floating-point support; 2003: DirectX 9 at ATI

2007 CUDA
2009 OpenCL
2016 Top 500: > 1/10with GPUs [4], Green 500: ≈ 2/3 of top 50 with GPUs [5]

Member of the Helmholtz Association 8 August 2018 Slide 2 44

Status Quo Across Architectures
Performance

10
2

10
3

10
4

 2008 2010 2012 2014 2016

HD 3
870

HD 4
870

HD 5
870

HD 6
970

HD 6
970

HD 7
970 G

Hz
Ed.

HD 8
970

Fire
Pro

 W
9100

Fire
Pro

 S
9150

X5482

X5492

W
5590

X5680

X5690

E5-2
690

E5-2
697 v

2

E5-2
699 v

3

E5-2
699 v

3

E5-2
699 v

4

Tesla
 C

1060

Tesla
 C

1060 Tesla
 C

2050 Tesla
 M

2090

Tesla
 K

20

Tesla
 K

20X

Tesla
 K

40

Tesla
 K

40

Tesla
 P

100

Xeon Phi 7120 (KNC)

X
eo

n
P
hi

 7
29

0
(K

N
L)

G
F

L
O

P
/s

e
c

End of Year

Theoretical Peak Performance, Double Precision

INTEL Xeon CPUs

NVIDIA Tesla GPUs

AMD Radeon GPUs

INTEL Xeon Phis

Gr
ap

hi
c:
Ru

pp
[6
]

Member of the Helmholtz Association 8 August 2018 Slide 3 44

Status Quo Across Architectures
Memory Bandwidth

10
1

10
2

10
3

 2008 2010 2012 2014 2016

HD 3870

HD 4870
HD 5870

HD 6970

HD 6970
HD 7970 G

Hz Ed.

HD 8970
Fire

Pro W
9100

Fire
Pro S9150

X5482
X5492 W5590

X5680
X5690

E5-2690
E5-2697 v2

E5-2699 v3

E5-2699 v3

E5-2699 v4Tesla C
1060

Tesla C
1060 Tesla C

2050
Tesla M

2090

Tesla K20 Tesla K20X

Tesla K40

Tesla P100

Xeon Phi 7120 (KNC)

X
eo

n
P
hi

 7
29

0
(K

N
L)

G
B

/s
e

c

End of Year

Theoretical Peak Memory Bandwidth Comparison

INTEL Xeon CPUs

NVIDIA Tesla GPUs

AMD Radeon GPUs

INTEL Xeon Phis

Gr
ap

hi
c:
Ru

pp
[6
]

Member of the Helmholtz Association 8 August 2018 Slide 3 44

Status Quo Across Architectures
Memory Bandwidth

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 2008 2010 2012 2014 2016

HD 3870 HD 4870 HD 5870
HD 6970

HD 6970

HD 7970 G
Hz Ed.

HD 8970 Fire
Pro W

9100

Fire
Pro S9150

X5482
X5492

W5590

X5680
X5690

E5-2690

E5-2697 v2

E5-2699 v3

E5-2699 v3

E5-2699 v4

Tesla C
1060

Tesla C
1060

Tesla C
2050

Tesla M
2090

Tesla K20
Tesla K20X

Tesla K40

Tesla P100

Xeon Phi 7120 (KNC)

X
eo

n
P
hi

 7
29

0
(K

N
L)

G
B

/s
e

c

End of Year

Theoretical Peak Memory Bandwidth Comparison

INTEL Xeon CPUs

NVIDIA Tesla GPUs

AMD Radeon GPUs

INTEL Xeon Phis

Gr
ap

hi
c:
Ru

pp
[6
]

Member of the Helmholtz Association 8 August 2018 Slide 3 44

JURECA – Jülich’s Multi-Purpose Supercomputer
1872 nodes with Intel Xeon E5 CPUs (2× 12 cores)
75 nodes with 2 NVIDIA Tesla K80 cards (look like 4 GPUs)
JURECA Booster: 1640 nodes with Intel Xeon Phi Knights Landing
1.8 (CPU) + 0.44 (GPU) + 5 (KNL) PFLOP/s peak performance (#29)
Mellanox EDR InfiniBand

Member of the Helmholtz Association 8 August 2018 Slide 4 44

JURONJULIA

JURON – A Human Brain Project Prototype
18 nodes with IBM POWER8NVL CPUs (2× 10 cores)
Per Node: 4 NVIDIA Tesla P100 cards, connected via NVLink
GPU: 0.38 PFLOP/s peak performance

Member of the Helmholtz Association 8 August 2018 Slide 5 44

JURONJULIA

JURON – A Human Brain Project Prototype
18 nodes with IBM POWER8NVL CPUs (2× 10 cores)
Per Node: 4 NVIDIA Tesla P100 cards, connected via NVLink
GPU: 0.38 PFLOP/s peak performance

Member of the Helmholtz Association 8 August 2018 Slide 5 44

JUWELS – Jülich’s New Large System just went online
2500 nodes with Intel Xeon CPUs (2× 24 cores)
48 nodes with 4 NVIDIA Tesla V100 cards
10.4 (CPU) + 1.6 (GPU) + PFLOP/s peak performance

Member of the Helmholtz Association 8 August 2018 Slide 6 44

Getting GPU-Acquainted
Some Applications

Location of Code:
1-Basics/exercises/tasks/getting_started/

See Instructions.rst for hints.

TASK

Member of the Helmholtz Association 8 August 2018 Slide 7 44

Getting GPU-Acquainted
Some Applications

Location of Code:
1-Basics/exercises/tasks/getting_started/

See Instructions.rst for hints.

GEMM N-Body

Dot ProductMandelbrot

TASK

Member of the Helmholtz Association 8 August 2018 Slide 7 44

Getting GPU-Acquainted
Some Applications

2000 4000 6000 8000 10000 12000 14000 16000
Size of Square Matrix

0

500

1000

1500

2000

2500

GF
LO

P/
s

DGEMM Benchmark

CPU
GPU

GEMM

20000 40000 60000 80000 100000 120000
Number of Particles

0

2000

4000

6000

8000

10000

12000

GF
LO

P/
s

N-Body Benchmark

1 GPU SP
2 GPUs SP
4 GPUs SP
1 GPU DP
2 GPUs DP
4 GPUs DP N-Body

103 104 105 106 107 108 109

Length of Vector

101

102

103

104

M
FL

O
P/

s

DDot Benchmark

CPU
GPU

Dot Product

5000 10000 15000 20000 25000 30000
Width of Image

0

250

500

750

1000

1250

M
Pi

xe
l/

s

Mandelbrot Benchmark

CPU
GPU

Mandelbrot

TASK

Member of the Helmholtz Association 8 August 2018 Slide 7 44

The GPU Platform

Member of the Helmholtz Association 8 August 2018 Slide 8 44

CPU vs. GPU
Amatter of specialties

Transporting one

Gr
ap

hi
cs
:L
ee

[7
]a

nd
Sh

ea
rin

gs
H
ol
id
ay
s[
8]

Transporting many

Member of the Helmholtz Association 8 August 2018 Slide 9 44

CPU vs. GPU
Amatter of specialties

Transporting one

Gr
ap

hi
cs
:L
ee

[7
]a

nd
Sh

ea
rin

gs
H
ol
id
ay
s[
8]

Transporting many

Member of the Helmholtz Association 8 August 2018 Slide 9 44

CPU vs. GPU
Chip

ALUALU

ALU ALU
Control

Cache

DRAM DRAM

Member of the Helmholtz Association 8 August 2018 Slide 10 44

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Member of the Helmholtz Association 8 August 2018 Slide 11 44

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Member of the Helmholtz Association 8 August 2018 Slide 11 44

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Member of the Helmholtz Association 8 August 2018 Slide 11 44

Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA
Memory transfers need special consideration!
Do as little as possible!
Formerly: Explicitly copy data to/from GPU
Now: Done automatically (performance…?)
P100: 16 GB RAM, 720 GB/s; V100: 16 (32) GB RAM, 900 GB/s

Member of the Helmholtz Association 8 August 2018 Slide 12 44

Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA

Memory transfers need special consideration!
Do as little as possible!
Formerly: Explicitly copy data to/from GPU
Now: Done automatically (performance…?)
P100: 16 GB RAM, 720 GB/s; V100: 16 (32) GB RAM, 900 GB/s

Unified Virtual Addressing

Member of the Helmholtz Association 8 August 2018 Slide 12 44

Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

PCIe
<16GB/s

HBM2
<720GB/s

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA

Memory transfers need special consideration!
Do as little as possible!
Formerly: Explicitly copy data to/from GPU
Now: Done automatically (performance…?)
P100: 16 GB RAM, 720 GB/s; V100: 16 (32) GB RAM, 900 GB/s

Member of the Helmholtz Association 8 August 2018 Slide 12 44

Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

PCIe
<16GB/s

HBM2
<720GB/s

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA
Memory transfers need special consideration!
Do as little as possible!

Formerly: Explicitly copy data to/from GPU
Now: Done automatically (performance…?)
P100: 16 GB RAM, 720 GB/s; V100: 16 (32) GB RAM, 900 GB/s

Member of the Helmholtz Association 8 August 2018 Slide 12 44

Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

PCIe
<16GB/s

HBM2
<720GB/s

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA and UM
Memory transfers need special consideration!
Do as little as possible!
Formerly: Explicitly copy data to/from GPU
Now: Done automatically (performance…?)

P100: 16 GB RAM, 720 GB/s; V100: 16 (32) GB RAM, 900 GB/s

Unified Memory

Member of the Helmholtz Association 8 August 2018 Slide 12 44

Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

HBM2
<720GB/s

NVLink
≈80GB/s

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA and UM
Memory transfers need special consideration!
Do as little as possible!
Formerly: Explicitly copy data to/from GPU
Now: Done automatically (performance…?)

P100: 16 GB RAM, 720 GB/s; V100: 16 (32) GB RAM, 900 GB/s

Member of the Helmholtz Association 8 August 2018 Slide 12 44

Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

HBM2
<720GB/s

NVLink
≈80GB/s

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA and UM
Memory transfers need special consideration!
Do as little as possible!
Formerly: Explicitly copy data to/from GPU
Now: Done automatically (performance…?)
P100: 16 GB RAM, 720 GB/s; V100: 16 (32) GB RAM, 900 GB/s

Member of the Helmholtz Association 8 August 2018 Slide 12 44

Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU memory

, transfer
program

2 Load GPU program, execute on SMs, get (cached) data from
memory; write back

3 Transfer results back to host memory

Member of the Helmholtz Association 8 August 2018 Slide 13 44

Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU memory

, transfer
program

2 Load GPU program, execute on SMs, get (cached) data from
memory; write back

3 Transfer results back to host memory

Member of the Helmholtz Association 8 August 2018 Slide 13 44

Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU memory, transfer
program

2 Load GPU program, execute on SMs, get (cached) data from
memory; write back

3 Transfer results back to host memory

Member of the Helmholtz Association 8 August 2018 Slide 13 44

Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU memory, transfer
program

2 Load GPU program, execute on SMs, get (cached) data from
memory; write back

3 Transfer results back to host memory

Member of the Helmholtz Association 8 August 2018 Slide 13 44

Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU memory, transfer
program

2 Load GPU program, execute on SMs, get (cached) data from
memory; write back

3 Transfer results back to host memory

Member of the Helmholtz Association 8 August 2018 Slide 13 44

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Member of the Helmholtz Association 8 August 2018 Slide 14 44

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Member of the Helmholtz Association 8 August 2018 Slide 14 44

Async
Following different streams

Problem: Memory transfer is comparably slow
Solution: Do something else in meantime (computation)!

→ Overlap tasks

Copy and compute engines run separately (streams)
Copy Compute Copy Compute

Copy Compute Copy Compute

GPU needs to be fed: Schedule many computations
CPU can do other work while GPU computes; synchronization

Member of the Helmholtz Association 8 August 2018 Slide 15 44

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Member of the Helmholtz Association 8 August 2018 Slide 16 44

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Member of the Helmholtz Association 8 August 2018 Slide 16 44

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)

Simultaneous Multithreading (SMT)
GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

+

+

+

C0

C1

C2

C3

=

=

=

=

Scalar

Member of the Helmholtz Association 8 August 2018 Slide 17 44

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)

Simultaneous Multithreading (SMT)
GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Member of the Helmholtz Association 8 August 2018 Slide 17 44

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Member of the Helmholtz Association 8 August 2018 Slide 17 44

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

Member of the Helmholtz Association 8 August 2018 Slide 17 44

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

Member of the Helmholtz Association 8 August 2018 Slide 17 44

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 8 August 2018 Slide 17 44

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)
CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 8 August 2018 Slide 17 44

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)
CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

Tesla V100

Gr
ap

hi
cs
:N

vi
di
a
Co

rp
or
at
io
n
[9
]

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 8 August 2018 Slide 17 44

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)
CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

Tesla V100

Gr
ap

hi
cs
:N

vi
di
a
Co

rp
or
at
io
n
[9
]

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 8 August 2018 Slide 17 44

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)
CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

Tesla V100

Multiprocessor

Gr
ap

hi
cs
:N

vi
di
a
Co

rp
or
at
io
n
[9
]

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 8 August 2018 Slide 17 44

Low Latency vs. High Throughput
Maybe GPU’s ultimate feature

CPU Minimizes latency within each thread
GPU Hides latency with computations from other thread warps

CPU Core: Low Latency
T1 T2 T3 T4

GPU Streaming Multiprocessor: High Throughput
W1

W2

W3

W4
Waiting
Ready
Context Switch
Processing
Thread/Warp

Member of the Helmholtz Association 8 August 2018 Slide 18 44

Low Latency vs. High Throughput
Maybe GPU’s ultimate feature

CPU Minimizes latency within each thread
GPU Hides latency with computations from other thread warps

CPU Core: Low Latency
T1 T2 T3 T4

GPU Streaming Multiprocessor: High Throughput
W1

W2

W3

W4

Waiting
Ready
Context Switch
Processing
Thread/Warp

Member of the Helmholtz Association 8 August 2018 Slide 18 44

Low Latency vs. High Throughput
Maybe GPU’s ultimate feature

CPU Minimizes latency within each thread
GPU Hides latency with computations from other thread warps

CPU Core: Low Latency
T1 T2 T3 T4

GPU Streaming Multiprocessor: High Throughput
W1

W2

W3

W4
Waiting
Ready
Context Switch
Processing
Thread/Warp

Member of the Helmholtz Association 8 August 2018 Slide 18 44

CPU vs. GPU
Let’s summarize this!

Optimized for low latency
+ Large main memory
+ Fast clock rate
+ Large caches
+ Branch prediction
+ Powerful ALU
− Relatively lowmemory bandwidth
− Cachemisses costly
− Low performance per watt

Optimized for high throughput
+ High bandwidth main memory
+ Latency tolerant (parallelism)
+ More compute resources
+ High performance per watt
− Limited memory capacity
− Low per-thread performance
− Extension card

Member of the Helmholtz Association 8 August 2018 Slide 19 44

Programming GPUs

Member of the Helmholtz Association 8 August 2018 Slide 20 44

Preface: CPU
A simple CPU program!

SAXPY: y⃗ = a⃗x+ y⃗, with single precision
Part of LAPACK BLAS Level 1
void saxpy(int n, float a, float * x, float * y) {

for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy(n, a, x, y);

Member of the Helmholtz Association 8 August 2018 Slide 21 44

http://www.netlib.org/lapack/

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries!

W
iz
ar
d:

Br
ea
ze
ll
[1
0]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

th ano

Member of the Helmholtz Association 8 August 2018 Slide 22 44

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries!

W
iz
ar
d:

Br
ea
ze
ll
[1
0]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

th ano

Member of the Helmholtz Association 8 August 2018 Slide 22 44

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries!

W
iz
ar
d:

Br
ea
ze
ll
[1
0]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

th ano

Member of the Helmholtz Association 8 August 2018 Slide 22 44

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries!

W
iz
ar
d:

Br
ea
ze
ll
[1
0]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

th ano

Member of the Helmholtz Association 8 August 2018 Slide 22 44

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries!

W
iz
ar
d:

Br
ea
ze
ll
[1
0]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

th ano

Member of the Helmholtz Association 8 August 2018 Slide 22 44

cuBLAS
Parallel algebra

GPU-parallel BLAS (all 152 routines)
Single, double, complex data types
Constant competition with Intel’s MKL
Multi-GPU support

→ https://developer.nvidia.com/cublas
http://docs.nvidia.com/cuda/cublas

Member of the Helmholtz Association 8 August 2018 Slide 23 44

https://developer.nvidia.com/cublas
http://docs.nvidia.com/cuda/cublas

cuBLAS
Code example

int a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]);
cudaMallocManaged(&d_y, n * sizeof(y[0]);
cublasSetVector(n, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector(n, sizeof(y[0]), y, 1, d_y, 1);

cublasSaxpy(n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Member of the Helmholtz Association 8 August 2018 Slide 24 44

cuBLAS
Code example

int a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]);
cudaMallocManaged(&d_y, n * sizeof(y[0]);
cublasSetVector(n, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector(n, sizeof(y[0]), y, 1, d_y, 1);

cublasSaxpy(n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Initialize

Member of the Helmholtz Association 8 August 2018 Slide 24 44

cuBLAS
Code example

int a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]);
cudaMallocManaged(&d_y, n * sizeof(y[0]);
cublasSetVector(n, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector(n, sizeof(y[0]), y, 1, d_y, 1);

cublasSaxpy(n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Initialize

Allocate GPUmemory

Member of the Helmholtz Association 8 August 2018 Slide 24 44

cuBLAS
Code example

int a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]);
cudaMallocManaged(&d_y, n * sizeof(y[0]);
cublasSetVector(n, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector(n, sizeof(y[0]), y, 1, d_y, 1);

cublasSaxpy(n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Initialize

Allocate GPUmemory

Copy data to GPU

Member of the Helmholtz Association 8 August 2018 Slide 24 44

cuBLAS
Code example

int a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]);
cudaMallocManaged(&d_y, n * sizeof(y[0]);
cublasSetVector(n, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector(n, sizeof(y[0]), y, 1, d_y, 1);

cublasSaxpy(n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Initialize

Allocate GPUmemory

Copy data to GPU

Call BLAS routine

Member of the Helmholtz Association 8 August 2018 Slide 24 44

cuBLAS
Code example

int a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]);
cudaMallocManaged(&d_y, n * sizeof(y[0]);
cublasSetVector(n, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector(n, sizeof(y[0]), y, 1, d_y, 1);

cublasSaxpy(n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Initialize

Allocate GPUmemory

Copy data to GPU

Call BLAS routine

Copy result to host

Member of the Helmholtz Association 8 August 2018 Slide 24 44

cuBLAS
Code example

int a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]);
cudaMallocManaged(&d_y, n * sizeof(y[0]);
cublasSetVector(n, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector(n, sizeof(y[0]), y, 1, d_y, 1);

cublasSaxpy(n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Initialize

Allocate GPUmemory

Copy data to GPU

Call BLAS routine

Copy result to host

Finalize

Member of the Helmholtz Association 8 August 2018 Slide 24 44

cuBLAS Task
Implement amatrix-matrix multiplication

Location of code: 1-Basics/excercises/tasks/cublas/
Look at Instructions.rst for instructions

1 Implement call to double-precision GEMM of cuBLAS
2 Build with make (CUDA needs to be loaded!)
3 Run with make run

Or srun ./dgemm_um N, where N=100, 200, …
Check cuBLAS documentation for details on cublasDgemm()

JUWELS Getting Started

module load CUDA/9.1.85
salloc --partition=gpus --gres=mem192,gpu:4 -n 1
srun hostname
srun --pty --forward-x bash -i

TASK

Member of the Helmholtz Association 8 August 2018 Slide 25 44

http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-gemm

Programming GPUs
About CUDA Alternatives

Member of the Helmholtz Association 8 August 2018 Slide 26 44

! Parallelism

Libraries are not enough?

You think you want to write your own GPU code?

Member of the Helmholtz Association 8 August 2018 Slide 27 44

Primer on Parallel Scaling
Amdahl’s Law

Possible maximum speedup for
N parallel processors

Total Time t = tserial + tparallel

N Processors t(N) = ts + tp/N

Speedup s(N) = t/t(N) = ts+tp
ts+tp/N

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Number of Processors

0

20

40

60

80

100

Sp
ee

du
p

Parallel Portion: 50%
Parallel Portion: 75%
Parallel Portion: 90%
Parallel Portion: 95%
Parallel Portion: 99%

Member of the Helmholtz Association 8 August 2018 Slide 28 44

Primer on Parallel Scaling
Amdahl’s Law

Possible maximum speedup for
N parallel processors

Total Time t = tserial + tparallel
N Processors t(N) = ts + tp/N

Speedup s(N) = t/t(N) = ts+tp
ts+tp/N

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Number of Processors

0

20

40

60

80

100

Sp
ee

du
p

Parallel Portion: 50%
Parallel Portion: 75%
Parallel Portion: 90%
Parallel Portion: 95%
Parallel Portion: 99%

Member of the Helmholtz Association 8 August 2018 Slide 28 44

Primer on Parallel Scaling
Amdahl’s Law

Possible maximum speedup for
N parallel processors

Total Time t = tserial + tparallel
N Processors t(N) = ts + tp/N

Speedup s(N) = t/t(N) = ts+tp
ts+tp/N

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Number of Processors

0

20

40

60

80

100

Sp
ee

du
p

Parallel Portion: 50%
Parallel Portion: 75%
Parallel Portion: 90%
Parallel Portion: 95%
Parallel Portion: 99%

Member of the Helmholtz Association 8 August 2018 Slide 28 44

Primer on Parallel Scaling
Amdahl’s Law

Possible maximum speedup for
N parallel processors

Total Time t = tserial + tparallel
N Processors t(N) = ts + tp/N

Speedup s(N) = t/t(N) = ts+tp
ts+tp/N

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Number of Processors

0

20

40

60

80

100

Sp
ee

du
p

Parallel Portion: 50%
Parallel Portion: 75%
Parallel Portion: 90%
Parallel Portion: 95%
Parallel Portion: 99%

Member of the Helmholtz Association 8 August 2018 Slide 28 44

! Parallelism

Parallel programming is not easy!

Things to consider:
Is my application computationally intensive enough?
What are the levels of parallelism?
Howmuch data needs to be transferred?
Is the gainworth the pain?

Member of the Helmholtz Association 8 August 2018 Slide 29 44

Alternatives
The twilight

There are alternatives to CUDA C, which can ease the pain…
OpenACC
Thrust
PyCUDA

Other alternatives (for completeness)
CUDA Fortran
OpenMP
OpenCL

Member of the Helmholtz Association 8 August 2018 Slide 30 44

Alternatives
The twilight

There are alternatives to CUDA C, which can ease the pain…
OpenACC
Thrust
PyCUDA

Other alternatives (for completeness)
CUDA Fortran
OpenMP
OpenCL

Member of the Helmholtz Association 8 August 2018 Slide 30 44

Programming GPUs
Directives

Member of the Helmholtz Association 8 August 2018 Slide 31 44

GPU Programming with Directives
Keepin’ you portable

Annotate serial source code by directives
#pragma acc loop
for (int i = 0; i < 1; i+*) {};

Also: Generalized API functions
acc_copy();

Compiler interprets directives, creates according instructions

Pro
Portability

Other compiler? No problem! To it, it’s a
serial program
Different target architectures from same
code

Easy to program

Con
Only few compilers
Not all the raw power available
Harder to debug
Easy to programwrong

Member of the Helmholtz Association 8 August 2018 Slide 32 44

GPU Programming with Directives
Keepin’ you portable

Annotate serial source code by directives
#pragma acc loop
for (int i = 0; i < 1; i+*) {};

Also: Generalized API functions
acc_copy();

Compiler interprets directives, creates according instructions

Pro
Portability

Other compiler? No problem! To it, it’s a
serial program
Different target architectures from same
code

Easy to program

Con
Only few compilers
Not all the raw power available
Harder to debug
Easy to programwrong

Member of the Helmholtz Association 8 August 2018 Slide 32 44

GPU Programming with Directives
Keepin’ you portable

Annotate serial source code by directives
#pragma acc loop
for (int i = 0; i < 1; i+*) {};

Also: Generalized API functions
acc_copy();

Compiler interprets directives, creates according instructions

Pro
Portability

Other compiler? No problem! To it, it’s a
serial program
Different target architectures from same
code

Easy to program

Con
Only few compilers
Not all the raw power available
Harder to debug
Easy to programwrong

Member of the Helmholtz Association 8 August 2018 Slide 32 44

GPU Programming with Directives
The power of… two.

OpenMP Standard for multithread programming on CPU, GPU since 4.0, better since 4.5
#pragma omp target map(tofrom:y), map(to:x)
#pragma omp teams num_teams(10) num_threads(10)
#pragma omp distribute
for () {

#pragma omp parallel for
for () {
// …
}

}

OpenACC Similar to OpenMP, but more specifically for GPUs
For C/C++ and Fortran

Member of the Helmholtz Association 8 August 2018 Slide 33 44

OpenACC
Code example

void saxpy_acc(int n, float a, float * x, float * y) {
#pragma acc kernels
for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy_acc(n, a, x, y);

Member of the Helmholtz Association 8 August 2018 Slide 34 44

OpenACC
Code example

void saxpy_acc(int n, float a, float * x, float * y) {
#pragma acc parallel loop copy(y) copyin(x)
for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy_acc(n, a, x, y);

Member of the Helmholtz Association 8 August 2018 Slide 34 44

OpenACC
Code example

void saxpy_acc(int n, float a, float * x, float * y) {
#pragma acc parallel loop copy(y) copyin(x)
for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy_acc(n, a, x, y);

TASK

Member of the Helmholtz Association 8 August 2018 Slide 34 44

OpenACC
Code example

void saxpy_acc(int n, float a, float * x, float * y) {
#pragma acc parallel loop copy(y) copyin(x)
for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy_acc(n, a, x, y);

TASK

Tommorrow!

Member of the Helmholtz Association 8 August 2018 Slide 34 44

Programming GPUs
Thrust

Member of the Helmholtz Association 8 August 2018 Slide 35 44

Thrust
Iterators! Iterators everywhere!

Thrust
CUDA = STL

C++
Template library
Based on iterators
Data-parallel primitives (scan(), sort(), reduce(), …)
Fully compatible with plain CUDA C (comes with CUDA Toolkit)

→ http://thrust.github.io/
http://docs.nvidia.com/cuda/thrust/

Member of the Helmholtz Association 8 August 2018 Slide 36 44

http://thrust.github.io/
http://docs.nvidia.com/cuda/thrust/

Thrust
Code example

int a = 42;
int n = 10;
thrust::host_vector<float> x(n), y(n);
// fill x, y

thrust::device_vector d_x = x, d_y = y;

using namespace thrust::placeholders;
thrust::transform(d_x.begin(), d_x.end(), d_y.begin(), d_y.begin(), a * _1 + _2);

x = d_x;

Member of the Helmholtz Association 8 August 2018 Slide 37 44

Thrust Task
Let’s sort some randomness

TASK

Location of code: 1-Basics/excercises/tasks/thrust/
Look at Instructions.rst for instructions

1 Sort random numbers with Thrust on CPU and GPU
2 Build with make (CUDA needs to be loaded!)
3 Run with make run

Or srun -p gpus --gres=gpu:1 ./ThrustSort

Check Thrust documentation for details on thrust::sort()

Member of the Helmholtz Association 8 August 2018 Slide 38 44

http://thrust.github.io/

Summary of Acceleration Possibilities

Application

Libraries Directives
Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Member of the Helmholtz Association 8 August 2018 Slide 39 44

Programming GPUs
CUDA C/C++

Member of the Helmholtz Association 8 August 2018 Slide 40 44

CUDA SAXPY
With runtime-managed data transfers

__global__ void saxpy_cuda(int n, float a, float * x, float * y) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y
cudaMallocManaged(&x, n * sizeof(float));
cudaMallocManaged(&y, n * sizeof(float));

saxpy_cuda<<<2, 5>>>(n, a, x, y);

cudaDeviceSynchronize();

Member of the Helmholtz Association 8 August 2018 Slide 41 44

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads

→ Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 8 August 2018 Slide 42 44

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Thread

→ Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 8 August 2018 Slide 42 44

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads

→ Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 8 August 2018 Slide 42 44

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 8 August 2018 Slide 42 44

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Block

→ Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5

0

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 8 August 2018 Slide 42 44

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 8 August 2018 Slide 42 44

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks → Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 8 August 2018 Slide 42 44

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks → Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 8 August 2018 Slide 42 44

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks → Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 8 August 2018 Slide 42 44

CUDA API
?!?

→ Jan!

Member of the Helmholtz Association 8 August 2018 Slide 43 44

Conclusions
…of Part 1

GPUs achieve performance by specialized hardware
Acceleration can be done by different means
Libraries are the easiest
Thrust, OpenACC can give first entry point
Full power with CUDA
CUDA parallelizes for GPUswith many threads

Member of the Helmholtz Association 8 August 2018 Slide 44 44

Conclusions
…of Part 1

GPUs achieve performance by specialized hardware
Acceleration can be done by different means
Libraries are the easiest
Thrust, OpenACC can give first entry point
Full power with CUDA
CUDA parallelizes for GPUswith many threads Thank you

for your att
ention!

a.herten@fz-juelich.de

Member of the Helmholtz Association 8 August 2018 Slide 44 44

mailto:a.herten@fz-juelich.de

APPENDIX

Member of the Helmholtz Association 8 August 2018 Slide 1 10

Appendix
Glossary
References

Member of the Helmholtz Association 8 August 2018 Slide 2 10

Glossary I

API A programmatic interface to software by well-defined functions. Short for
application programming interface. 82, 83, 84, 106, 113

ATI Canada-based GPUsmanufacturing company; bought by AMD in 2006. 3, 4, 5, 6,
7

CUDA Computing platform for GPUs from NVIDIA. Provides, among others, CUDA
C/C++. 2, 3, 4, 5, 6, 7, 79, 80, 91, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105,
106, 107, 108, 112

JSC Jülich Supercomputing Centre, the supercomputing institute of
Forschungszentrum Jülich, Germany. 111

JURECA Amulti-purpose supercomputer with 1800 nodes at JSC. 11

Member of the Helmholtz Association 8 August 2018 Slide 3 10

Glossary II
JURON One of the two HBP pilot system in Jülich; name derived from Juelich and

Neuron. 12, 13
JUWELS Jülich’s new supercomputer, the successor of JUQUEEN. 14, 71

NVIDIA US technology company creating GPUs. 3, 4, 5, 6, 7, 11, 12, 13, 14, 111, 112, 113,
114

NVLink NVIDIA’s communication protocol connecting CPU↔ GPU and GPU↔ GPUwith
high bandwidth. 12, 13, 113

OpenACC Directive-based programming, primarily for many-core machines. 79, 80, 85, 86,
87, 88, 89, 107, 108

OpenCL The Open Computing Language. Framework for writing code for heterogeneous
architectures (CPU, GPU, DSP, FPGA). The alternative to CUDA. 3, 4, 5, 6, 7, 79, 80

Member of the Helmholtz Association 8 August 2018 Slide 4 10

Glossary III
OpenGL The Open Graphics Library, an API for rendering graphics across different

hardware architectures. 3, 4, 5, 6, 7
OpenMP Directive-based programming, primarily for multi-threadedmachines. 79, 80, 85

P100 A large GPUwith the Pascal architecture from NVIDIA. It employs NVLink as its
interconnect and has fast HBM2memory. 12, 13

Pascal GPU architecture from NVIDIA (announced 2016). 113
POWER CPU architecture from IBM, earlier: PowerPC. See also POWER8. 113
POWER8 Version 8 of IBM’s POWERprocessor, available also under the OpenPOWER

Foundation. 12, 13, 113

SAXPY Single-precision A× X+ Y. A simple code example of scaling a vector and adding
an offset. 57, 96

Member of the Helmholtz Association 8 August 2018 Slide 5 10

Glossary IV
Tesla The GPU product line for general purpose computing computing of NVIDIA. 11,

12, 13, 14
Thrust A parallel algorithms library for (among others) GPUs. See

https://thrust.github.io/. 79, 80, 91, 93, 107, 108

CPU Central Processing Unit. 11, 12, 13, 14, 19, 20, 21, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 57, 85, 93, 112, 113

GPU Graphics Processing Unit. 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 58, 59, 60, 61, 62, 63, 72, 73, 81, 82, 83, 84, 85,
90, 93, 95, 107, 108, 111, 112, 113, 114

HBP Human Brain Project. 112

Member of the Helmholtz Association 8 August 2018 Slide 6 10

https://thrust.github.io/

Glossary V

SIMD Single Instruction, Multiple Data. 42, 43, 44, 45, 46, 47, 48, 49, 50, 51

SIMT Single Instruction, Multiple Threads. 22, 23, 24, 37, 38, 40, 41, 42, 43, 44, 45, 46,
47, 48, 49, 50, 51

SM Streaming Multiprocessor. 42, 43, 44, 45, 46, 47, 48, 49, 50, 51

SMT Simultaneous Multithreading. 42, 43, 44, 45, 46, 47, 48, 49, 50, 51

Member of the Helmholtz Association 8 August 2018 Slide 7 10

References I

[2] Kenneth E. Hoff III et al. “Fast Computation of Generalized Voronoi Diagrams Using
Graphics Hardware”. In: Proceedings of the 26th Annual Conference on Computer
Graphics and Interactive Techniques. SIGGRAPH ’99. New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co., 1999, pp. 277–286. ISBN: 0-201-48560-5. DOI:
10.1145/311535.311567. URL: http://dx.doi.org/10.1145/311535.311567
(pages 3–7).

[3] Chris McClanahan. “History and Evolution of GPU Architecture”. In: A Survey Paper
(2010). URL: http://mcclanahoochie.com/blog/wp-
content/uploads/2011/03/gpu-hist-paper.pdf (pages 3–7).

[4] Jack Dongarra et al. TOP500. Nov. 2016. URL:
https://www.top500.org/lists/2016/11/ (pages 3–7).

Member of the Helmholtz Association 8 August 2018 Slide 8 10

https://doi.org/10.1145/311535.311567
http://dx.doi.org/10.1145/311535.311567
http://mcclanahoochie.com/blog/wp-content/uploads/2011/03/gpu-hist-paper.pdf
http://mcclanahoochie.com/blog/wp-content/uploads/2011/03/gpu-hist-paper.pdf
https://www.top500.org/lists/2016/11/

References II

[5] Jack Dongarra et al. Green500. Nov. 2016. URL:
https://www.top500.org/green500/lists/2016/11/ (pages 3–7).

[6] Karl Rupp. Pictures: CPU/GPU Performance Comparison. URL:
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-
characteristics-over-time/ (pages 8–10).

[10] Wes Breazell. Picture: Wizard. URL:
https://thenounproject.com/wes13/collection/its-a-wizards-world/
(pages 58–62).

Member of the Helmholtz Association 8 August 2018 Slide 9 10

https://www.top500.org/green500/lists/2016/11/
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://thenounproject.com/wes13/collection/its-a-wizards-world/

References: Images, Graphics I

[1] Igor Ovsyannykov. Yarn. Freely available at Unsplash. URL:
https://unsplash.com/photos/hvILKk7SlH4.

[7] Mark Lee. Picture: kawasaki ninja. URL:
https://www.flickr.com/photos/pochacco20/39030210/ (pages 19, 20).

[8] Shearings Holidays. Picture: Shearings coach 636. URL:
https://www.flickr.com/photos/shearings/13583388025/ (pages 19, 20).

[9] Nvidia Corporation. Pictures: Volta GPU. Volta Architecture Whitepaper. URL:
https://images.nvidia.com/content/volta-architecture/pdf/Volta-
Architecture-Whitepaper-v1.0.pdf (pages 49–51).

Member of the Helmholtz Association 8 August 2018 Slide 10 10

https://unsplash.com/photos/hvILKk7SlH4
https://www.flickr.com/photos/pochacco20/39030210/
https://www.flickr.com/photos/shearings/13583388025/
https://images.nvidia.com/content/volta-architecture/pdf/Volta-Architecture-Whitepaper-v1.0.pdf
https://images.nvidia.com/content/volta-architecture/pdf/Volta-Architecture-Whitepaper-v1.0.pdf

	Outline
	Introduction
	GPU History
	Architecture Comparison
	Jülich Systems
	App Showcase

	The GPU Platform
	3 Core Features
	High Throughput
	Summary

	Programming GPUs
	Libraries
	About CUDA Alternatives
	Directives
	Thrust
	CUDA C/C++

	Appendix
	Appendix
	Glossary

	Glossary
	Acronyms
	References

	References
	References

