
UNIFIED MEMORY
GSP GPU COURSE 2018
8 August 2018 Andreas Herten Forschungszentrum Jülich

Member of the Helmholtz Association



Overview, Outline

Overview
Unified Memory enables easy access to GPU development
But some tuning might be needed for best performance

Contents
Background on Unified Memory

History of GPUMemory
Unified Memory on Pascal
Unified Memory on Kepler

Practical Differences
Revisiting scale_vector_um Example
Hints for Performance
Task

Member of the Helmholtz Association 8 August 2018 Slide 1 16



Background on Unified Memory
History of GPUMemory

Member of the Helmholtz Association 8 August 2018 Slide 2 16



CPU and GPUMemory
Location, location, location

CPUMemory

CPU

DRAM

Scheduler

. . .

Interconnect

L2

At the Beginning CPU and GPU memory very distinct, own addresses

CUDA 4.0 Unified Virtual Addressing: pointer from same address pool, but
data copy manual

CUDA 6.0 Unified Memory*: Data copy by driver, but whole data at once
CUDA 8.0 Unified Memory (truly): Data copy by driver, page faults

on-demand initiate data migrations (Pascal)
Future Address Translation Service: Omit page faults

Member of the Helmholtz Association 8 August 2018 Slide 3 16



CPU and GPUMemory
Location, location, location

CPUMemory

CPU

DRAM

Scheduler

. . .

Interconnect

L2

Unified
Virtual

Addressing

At the Beginning CPU and GPU memory very distinct, own addresses
CUDA 4.0 Unified Virtual Addressing: pointer from same address pool, but

data copy manual

CUDA 6.0 Unified Memory*: Data copy by driver, but whole data at once
CUDA 8.0 Unified Memory (truly): Data copy by driver, page faults

on-demand initiate data migrations (Pascal)
Future Address Translation Service: Omit page faults

Member of the Helmholtz Association 8 August 2018 Slide 3 16



CPU and GPUMemory
Location, location, location

CPUMemory

CPU

DRAM

Scheduler

. . .

Interconnect

L2

Unified
Memory

At the Beginning CPU and GPU memory very distinct, own addresses
CUDA 4.0 Unified Virtual Addressing: pointer from same address pool, but

data copy manual
CUDA 6.0 Unified Memory*: Data copy by driver, but whole data at once

CUDA 8.0 Unified Memory (truly): Data copy by driver, page faults
on-demand initiate data migrations (Pascal)

Future Address Translation Service: Omit page faults

Member of the Helmholtz Association 8 August 2018 Slide 3 16



CPU and GPUMemory
Location, location, location

CPUMemory

CPU

DRAM

Scheduler

. . .

Interconnect

L2

Unified
Memory

At the Beginning CPU and GPU memory very distinct, own addresses
CUDA 4.0 Unified Virtual Addressing: pointer from same address pool, but

data copy manual
CUDA 6.0 Unified Memory*: Data copy by driver, but whole data at once
CUDA 8.0 Unified Memory (truly): Data copy by driver, page faults

on-demand initiate data migrations (Pascal)

Future Address Translation Service: Omit page faults

Member of the Helmholtz Association 8 August 2018 Slide 3 16



CPU and GPUMemory
Location, location, location

CPUMemory

CPU

DRAM

Scheduler

. . .

Interconnect

L2

Unified
Memory

At the Beginning CPU and GPU memory very distinct, own addresses
CUDA 4.0 Unified Virtual Addressing: pointer from same address pool, but

data copy manual
CUDA 6.0 Unified Memory*: Data copy by driver, but whole data at once
CUDA 8.0 Unified Memory (truly): Data copy by driver, page faults

on-demand initiate data migrations (Pascal)
Future Address Translation Service: Omit page faults

Member of the Helmholtz Association 8 August 2018 Slide 3 16



Unified Memory in Code
Vojgjfe Nfnpsz

void sortfile(FILE *fp, int N) {
char *data;
char *data_d;

data = (char *)malloc(N);
cudaMalloc(&data_d, N);

fread(data, 1, N, fp);

cudaMemcpy(data_d, data, N,
cudaMemcpyHostToDevice);↪→

kernel<<<...>>>(data, N);

cudaMemcpy(data, data_d, N,
cudaMemcpyDeviceToHost);↪→

host_func(data);
cudaFree(data_d); free(data); }

void sortfile(FILE *fp, int N) {
char *data;

cudaMallocManaged(&data, N);

fread(data, 1, N, fp);

kernel<<<...>>>(data, N);
cudaDeviceSynchronize();

host_func(data);
cudaFree(data); }

Member of the Helmholtz Association 8 August 2018 Slide 4 16



Implementation Details (on Pascal)
Under the hood

cudaMallocManaged(&ptr, ...);

*ptr = 1;

kernel<<<...>>>(ptr);

Pages populate on first touch
Pages migrate on-demand
GPUmemory over-subscription possible
Concurrent access from CPU and GPU to memory (page-level)

Member of the Helmholtz Association 8 August 2018 Slide 5 16



Implementation Details (on Pascal)
Under the hood

cudaMallocManaged(&ptr, ...);

*ptr = 1;

kernel<<<...>>>(ptr);

Empty! No pages anywhere yet (like malloc())

Pages populate on first touch
Pages migrate on-demand
GPUmemory over-subscription possible
Concurrent access from CPU and GPU to memory (page-level)

Member of the Helmholtz Association 8 August 2018 Slide 5 16



Implementation Details (on Pascal)
Under the hood

cudaMallocManaged(&ptr, ...);

*ptr = 1;

kernel<<<...>>>(ptr);

Empty! No pages anywhere yet (like malloc())

CPU page fault: data allocates on CPU

Pages populate on first touch
Pages migrate on-demand
GPUmemory over-subscription possible
Concurrent access from CPU and GPU to memory (page-level)

Member of the Helmholtz Association 8 August 2018 Slide 5 16



Implementation Details (on Pascal)
Under the hood

cudaMallocManaged(&ptr, ...);

*ptr = 1;

kernel<<<...>>>(ptr);

Empty! No pages anywhere yet (like malloc())

CPU page fault: data allocates on CPU

GPU page fault: data migrates to GPU

Pages populate on first touch
Pages migrate on-demand
GPUmemory over-subscription possible
Concurrent access from CPU and GPU to memory (page-level)

Member of the Helmholtz Association 8 August 2018 Slide 5 16



Implementation Details (on Pascal)
Under the hood

cudaMallocManaged(&ptr, ...);

*ptr = 1;

kernel<<<...>>>(ptr);

Empty! No pages anywhere yet (like malloc())

CPU page fault: data allocates on CPU

GPU page fault: data migrates to GPU

Pages populate on first touch
Pages migrate on-demand
GPUmemory over-subscription possible
Concurrent access from CPU and GPU to memory (page-level)

Member of the Helmholtz Association 8 August 2018 Slide 5 16



On-Demand Migration Flow (Pascal, Volta)
GPUMemory

≈0.9 TB/s
SystemMemory

≈0.1 TB/s

Interconnect
cu

da
Ma

ll
oc

Ma
na

ge
d

Member of the Helmholtz Association 8 August 2018 Slide 6 16



On-Demand Migration Flow (Pascal, Volta)
GPUMemory

≈0.9 TB/s
SystemMemory

≈0.1 TB/s

Interconnect
cu

da
Ma

ll
oc

Ma
na

ge
d

Page
fault

Member of the Helmholtz Association 8 August 2018 Slide 6 16



On-Demand Migration Flow (Pascal, Volta)
GPUMemory

≈0.9 TB/s
SystemMemory

≈0.1 TB/s

Interconnect
cu

da
Ma

ll
oc

Ma
na

ge
d

Page
fault

Member of the Helmholtz Association 8 August 2018 Slide 6 16



On-Demand Migration Flow (Pascal, Volta)
GPUMemory

≈0.9 TB/s
SystemMemory

≈0.1 TB/s

Interconnect
cu

da
Ma

ll
oc

Ma
na

ge
d

Page
fault

Member of the Helmholtz Association 8 August 2018 Slide 6 16



On-Demand Migration Flow (Pascal, Volta)
GPUMemory

≈0.9 TB/s
SystemMemory

≈0.1 TB/s

Interconnect
cu

da
Ma

ll
oc

Ma
na

ge
d

Page
fault

Member of the Helmholtz Association 8 August 2018 Slide 6 16



On-Demand Migration Flow (Pascal, Volta)
GPUMemory

≈0.9 TB/s
SystemMemory

≈0.1 TB/s

Interconnect
cu

da
Ma

ll
oc

Ma
na

ge
d

Member of the Helmholtz Association 8 August 2018 Slide 6 16



On-Demand Migration Flow (Pascal, Volta)
GPUMemory

≈0.9 TB/s
SystemMemory

≈0.1 TB/s

Interconnect
cu

da
Ma

ll
oc

Ma
na

ge
d

Member of the Helmholtz Association 8 August 2018 Slide 6 16



On-Demand Migration Flow (Pascal, Volta)
GPUMemory

≈0.9 TB/s
SystemMemory

≈0.1 TB/s

Interconnect
cu

da
Ma

ll
oc

Ma
na

ge
d

Page
fault

Member of the Helmholtz Association 8 August 2018 Slide 6 16



On-Demand Migration Flow (Pascal, Volta)
GPUMemory

≈0.9 TB/s
SystemMemory

≈0.1 TB/s

Interconnect
cu

da
Ma

ll
oc

Ma
na

ge
d

Page
fault

Member of the Helmholtz Association 8 August 2018 Slide 6 16



On-Demand Migration Flow (Pascal, Volta)
GPUMemory

≈0.9 TB/s
SystemMemory

≈0.1 TB/s

Interconnect
cu

da
Ma

ll
oc

Ma
na

ge
d

Member of the Helmholtz Association 8 August 2018 Slide 6 16



On-Demand Migration Flow (Pascal, Volta)
GPUMemory

≈0.9 TB/s
SystemMemory

≈0.1 TB/s

Interconnect
cu

da
Ma

ll
oc

Ma
na

ge
d

Member of the Helmholtz Association 8 August 2018 Slide 6 16



On-Demand Migration Flow (Pascal, Volta)
GPUMemory

≈0.9 TB/s
SystemMemory

≈0.1 TB/s

Interconnect
cu

da
Ma

ll
oc

Ma
na

ge
d

Page
fault

Member of the Helmholtz Association 8 August 2018 Slide 6 16



On-Demand Migration Flow (Pascal, Volta)
GPUMemory

≈0.9 TB/s
SystemMemory

≈0.1 TB/s

Interconnect
cu

da
Ma

ll
oc

Ma
na

ge
d

Page
fault

Member of the Helmholtz Association 8 August 2018 Slide 6 16



On-Demand Migration Flow (Pascal, Volta)
GPUMemory

≈0.9 TB/s
SystemMemory

≈0.1 TB/s

Interconnect
cu

da
Ma

ll
oc

Ma
na

ge
d

Member of the Helmholtz Association 8 August 2018 Slide 6 16



On-Demand Migration Flow (Pascal, Volta)
GPUMemory

≈0.9 TB/s
SystemMemory

≈0.1 TB/s

Interconnect
cu

da
Ma

ll
oc

Ma
na

ge
d

Page
fault

Member of the Helmholtz Association 8 August 2018 Slide 6 16



On-Demand Migration Flow (Pascal, Volta)
GPUMemory

≈0.9 TB/s
SystemMemory

≈0.1 TB/s

Interconnect
cu

da
Ma

ll
oc

Ma
na

ge
d

Page
fault

Member of the Helmholtz Association 8 August 2018 Slide 6 16



On-Demand Migration Flow (Pascal, Volta)
GPUMemory

≈0.9 TB/s
SystemMemory

≈0.1 TB/s

Interconnect
cu

da
Ma

ll
oc

Ma
na

ge
d

Member of the Helmholtz Association 8 August 2018 Slide 6 16



On-Demand Migration Flow (Pascal, Volta)
GPUMemory

≈0.9 TB/s
SystemMemory

≈0.1 TB/s

Interconnect
cu

da
Ma

ll
oc

Ma
na

ge
d

Page
fault

Member of the Helmholtz Association 8 August 2018 Slide 6 16



On-Demand Migration Flow (Pascal, Volta)
GPUMemory

≈0.9 TB/s
SystemMemory

≈0.1 TB/s

Interconnect
cu

da
Ma

ll
oc

Ma
na

ge
d

Mapmemory to
systemmemory

Member of the Helmholtz Association 8 August 2018 Slide 6 16



On-Demand Migration Flow (Pascal, Volta)
GPUMemory

≈0.9 TB/s
SystemMemory

≈0.1 TB/s

Interconnect
cu

da
Ma

ll
oc

Ma
na

ge
d

Mapmemory to
systemmemory

Only needed page is copied (≥4 kB)!

Member of the Helmholtz Association 8 August 2018 Slide 6 16



Migration on Kepler
GPUMemory

≈0.3 TB/s
SystemMemory

≈0.1 TB/s

PCI-Express

Member of the Helmholtz Association 8 August 2018 Slide 7 16



Migration on Kepler
GPUMemory

≈0.3 TB/s
SystemMemory

≈0.1 TB/s

PCI-Express
cu

da
Ma

ll
oc

Ma
na

ge
d

Member of the Helmholtz Association 8 August 2018 Slide 7 16



Migration on Kepler
GPUMemory

≈0.3 TB/s
SystemMemory

≈0.1 TB/s

PCI-Express
cu

da
Ma

ll
oc

Ma
na

ge
d

Member of the Helmholtz Association 8 August 2018 Slide 7 16



Migration on Kepler
GPUMemory

≈0.3 TB/s
SystemMemory

≈0.1 TB/s

PCI-Express
cu

da
Ma

ll
oc

Ma
na

ge
d

Page
fault

Member of the Helmholtz Association 8 August 2018 Slide 7 16



Migration on Kepler
GPUMemory

≈0.3 TB/s
SystemMemory

≈0.1 TB/s

PCI-Express
cu

da
Ma

ll
oc

Ma
na

ge
d

Member of the Helmholtz Association 8 August 2018 Slide 7 16



Migration on Kepler
GPUMemory

≈0.3 TB/s
SystemMemory

≈0.1 TB/s

PCI-Express
cu

da
Ma

ll
oc

Ma
na

ge
d

Member of the Helmholtz Association 8 August 2018 Slide 7 16



Migration on Kepler
GPUMemory

≈0.3 TB/s
SystemMemory

≈0.1 TB/s

PCI-Express
cu

da
Ma

ll
oc

Ma
na

ge
d

Page
fault

Member of the Helmholtz Association 8 August 2018 Slide 7 16



Migration on Kepler
GPUMemory

≈0.3 TB/s
SystemMemory

≈0.1 TB/s

PCI-Express
cu

da
Ma

ll
oc

Ma
na

ge
d

Member of the Helmholtz Association 8 August 2018 Slide 7 16



Migration on Kepler
GPUMemory

≈0.3 TB/s
SystemMemory

≈0.1 TB/s

PCI-Express
cu

da
Ma

ll
oc

Ma
na

ge
d

Member of the Helmholtz Association 8 August 2018 Slide 7 16



Migration on Kepler
GPUMemory

≈0.3 TB/s
SystemMemory

≈0.1 TB/s

PCI-Express
cu

da
Ma

ll
oc

Ma
na

ge
d

Member of the Helmholtz Association 8 August 2018 Slide 7 16



Migration on Kepler
GPUMemory

≈0.3 TB/s
SystemMemory

≈0.1 TB/s

PCI-Express
cu

da
Ma

ll
oc

Ma
na

ge
d

Kernel
launch
Page fault

not supported

Member of the Helmholtz Association 8 August 2018 Slide 7 16



Migration on Kepler
GPUMemory

≈0.3 TB/s
SystemMemory

≈0.1 TB/s

PCI-Express
cu

da
Ma

ll
oc

Ma
na

ge
d

Member of the Helmholtz Association 8 August 2018 Slide 7 16



Migration on Kepler
GPUMemory

≈0.3 TB/s
SystemMemory

≈0.1 TB/s

PCI-Express
cu

da
Ma

ll
oc

Ma
na

ge
d

Member of the Helmholtz Association 8 August 2018 Slide 7 16



Implementation before Pascal
Kepler (JURECA), Maxwell, …

Pages populate on GPUwith cudaMallocManaged()
→ Might migrate to CPU if touched there first

Pages migrate in bulk to GPU on kernel launch
No over-subscription possible

Member of the Helmholtz Association 8 August 2018 Slide 8 16



Practical Differences
Revisiting scale_vector_um Example

Member of the Helmholtz Association 8 August 2018 Slide 9 16



Comparing UM on Pascal & Kepler
Different scales

Comparing scale_vector_um on JURON (JUWELS) and JURECA

Member of the Helmholtz Association 8 August 2018 Slide 10 16



Comparing UM on Pascal & Kepler
Different scales

Comparing scale_vector_um on JURON (JUWELS) and JURECA

==109924== Profiling result:
Time(%) Time Calls Avg Min Max Name
100.00% 4.9247ms 1 4.9247ms 4.9247ms 4.9247ms scale(float, float*, float*, int)

==12922== Profiling result:
Time(%) Time Calls Avg Min Max Name
100.00% 136.03us 1 136.03us 136.03us 136.03us scale(float, float*, float*, int)

JU
W
EL
S

JU
RE

CA

Member of the Helmholtz Association 8 August 2018 Slide 10 16



Comparing UM on Pascal & Kepler
Different scales

Comparing scale_vector_um on JURON (JUWELS) and JURECA

==109924== Profiling result:
Time(%) Time Calls Avg Min Max Name
100.00% 1.8203ms 1 1.8203ms 1.8203ms 1.8203ms scale(float, float*, float*, int)

==12922== Profiling result:
Time(%) Time Calls Avg Min Max Name
100.00% 136.03us 1 136.03us 136.03us 136.03us scale(float, float*, float*, int)

JU
RO

N
JU

RE
CA

Member of the Helmholtz Association 8 August 2018 Slide 10 16



Comparing UM on Pascal & Kepler
Different scales

Comparing scale_vector_um on JURON (JUWELS) and JURECA

==109924== Profiling result:
Time(%) Time Calls Avg Min Max Name
100.00% 1.8203ms 1 1.8203ms 1.8203ms 1.8203ms scale(float, float*, float*, int)

==12922== Profiling result:
Time(%) Time Calls Avg Min Max Name
100.00% 136.03us 1 136.03us 136.03us 136.03us scale(float, float*, float*, int)

JU
RO

N
JU

RE
CA

Why?!
Shouldn’t P100 and V100 bemuch faster than K80?

Member of the Helmholtz Association 8 August 2018 Slide 10 16



Comparing UM on Pascal & Kepler
Different scales

Comparing scale_vector_um on JURON (JUWELS) and JURECA

==109924== Profiling result:
Time(%) Time Calls Avg Min Max Name
100.00% 1.8203ms 1 1.8203ms 1.8203ms 1.8203ms scale(float, float*, float*, int)

==12922== Profiling result:
Time(%) Time Calls Avg Min Max Name
100.00% 136.03us 1 136.03us 136.03us 136.03us scale(float, float*, float*, int)

JU
RO

N
JU

RE
CA

Member of the Helmholtz Association 8 August 2018 Slide 10 16



Comparing UM on Pascal & Kepler
Different scales

Comparing scale_vector_um on JURON (JUWELS) and JURECA

==109924== Profiling result:
Time(%) Time Calls Avg Min Max Name
100.00% 1.8203ms 1 1.8203ms 1.8203ms 1.8203ms scale(float, float*, float*, int)

==12922== Profiling result:
Time(%) Time Calls Avg Min Max Name
100.00% 136.03us 1 136.03us 136.03us 136.03us scale(float, float*, float*, int)

JU
RO

N
JU

RE
CA

Member of the Helmholtz Association 8 August 2018 Slide 10 16



Comparing UM on Pascal & Kepler
What happens?

JURON Kernel is launched, data is needed by kernel, data migrates host→device
⇒ Run time of kernel incorporates time for data transfers

JURECA Data will be needed by kernel – so data migrates host→device before kernel launch
⇒ Run time of kernelwithout any transfers

Implementation on Pascal is the more convenient one
Total run time of whole program does not principally change
Except it gets shorter because of faster architecture
But data transfers sometimes sorted to kernel launch

⇒ What can we do about this?

Member of the Helmholtz Association 8 August 2018 Slide 11 16



Comparing UM on Pascal & Kepler
What happens?

JURON Kernel is launched, data is needed by kernel, data migrates host→device
⇒ Run time of kernel incorporates time for data transfers

JURECA Data will be needed by kernel – so data migrates host→device before kernel launch
⇒ Run time of kernelwithout any transfers

Implementation on Pascal is the more convenient one
Total run time of whole program does not principally change
Except it gets shorter because of faster architecture
But data transfers sometimes sorted to kernel launch

⇒ What can we do about this?

Member of the Helmholtz Association 8 August 2018 Slide 11 16



Comparing UM on Pascal & Kepler
What happens?

JURON Kernel is launched, data is needed by kernel, data migrates host→device
⇒ Run time of kernel incorporates time for data transfers

JURECA Data will be needed by kernel – so data migrates host→device before kernel launch
⇒ Run time of kernelwithout any transfers

Implementation on Pascal is the more convenient one
Total run time of whole program does not principally change
Except it gets shorter because of faster architecture
But data transfers sometimes sorted to kernel launch

⇒ What can we do about this?

Member of the Helmholtz Association 8 August 2018 Slide 11 16



Performance Hints for UM
General hints

Keep data local
Prevent migrations at all if data is processed by close processor

Minimize thrashing
Constant migrations hurt performance
Minimize page fault overhead
Fault handling costsO (10µs), stalls execution

Member of the Helmholtz Association 8 August 2018 Slide 12 16



Performance Hints for UM
General hints

Keep data local
Prevent migrations at all if data is processed by close processor
Minimize thrashing
Constant migrations hurt performance

Minimize page fault overhead
Fault handling costsO (10µs), stalls execution

Member of the Helmholtz Association 8 August 2018 Slide 12 16



Performance Hints for UM
General hints

Keep data local
Prevent migrations at all if data is processed by close processor
Minimize thrashing
Constant migrations hurt performance
Minimize page fault overhead
Fault handling costsO (10µs), stalls execution

Member of the Helmholtz Association 8 August 2018 Slide 12 16



Performance Hints for UM
New API routines

API calls to augment data location knowledge of runtime
cudaMemPrefetchAsync(data, length, device, stream)
Prefetches data to device (on stream) asynchronously

cudaMemAdvise(data, length, advice, device)
Advise about usage of given data, advice:

cudaMemAdviseSetReadMostly: Data is mostly read and occasionally written to
cudaMemAdviseSetPreferredLocation: Set preferred location to avoid migrations; first
access will establish mapping
cudaMemAdviseSetAccessedBy: Data is accessed by this device; will pre-map data to
avoid page fault

Use cudaCpuDeviceId for device CPU, or use cudaGetDevice() as usual to retrieve
current GPU device id (default: 0)

Member of the Helmholtz Association 8 August 2018 Slide 13 16



Performance Hints for UM
New API routines

API calls to augment data location knowledge of runtime
cudaMemPrefetchAsync(data, length, device, stream)
Prefetches data to device (on stream) asynchronously
cudaMemAdvise(data, length, advice, device)
Advise about usage of given data, advice:

cudaMemAdviseSetReadMostly: Data is mostly read and occasionally written to
cudaMemAdviseSetPreferredLocation: Set preferred location to avoid migrations; first
access will establish mapping
cudaMemAdviseSetAccessedBy: Data is accessed by this device; will pre-map data to
avoid page fault

Use cudaCpuDeviceId for device CPU, or use cudaGetDevice() as usual to retrieve
current GPU device id (default: 0)

Member of the Helmholtz Association 8 August 2018 Slide 13 16



Performance Hints for UM
New API routines

API calls to augment data location knowledge of runtime
cudaMemPrefetchAsync(data, length, device, stream)
Prefetches data to device (on stream) asynchronously
cudaMemAdvise(data, length, advice, device)
Advise about usage of given data, advice:

cudaMemAdviseSetReadMostly: Data is mostly read and occasionally written to

cudaMemAdviseSetPreferredLocation: Set preferred location to avoid migrations; first
access will establish mapping
cudaMemAdviseSetAccessedBy: Data is accessed by this device; will pre-map data to
avoid page fault

Use cudaCpuDeviceId for device CPU, or use cudaGetDevice() as usual to retrieve
current GPU device id (default: 0)

Member of the Helmholtz Association 8 August 2018 Slide 13 16



Performance Hints for UM
New API routines

API calls to augment data location knowledge of runtime
cudaMemPrefetchAsync(data, length, device, stream)
Prefetches data to device (on stream) asynchronously
cudaMemAdvise(data, length, advice, device)
Advise about usage of given data, advice:

cudaMemAdviseSetReadMostly: Data is mostly read and occasionally written to
cudaMemAdviseSetPreferredLocation: Set preferred location to avoid migrations; first
access will establish mapping

cudaMemAdviseSetAccessedBy: Data is accessed by this device; will pre-map data to
avoid page fault

Use cudaCpuDeviceId for device CPU, or use cudaGetDevice() as usual to retrieve
current GPU device id (default: 0)

Member of the Helmholtz Association 8 August 2018 Slide 13 16



Performance Hints for UM
New API routines

API calls to augment data location knowledge of runtime
cudaMemPrefetchAsync(data, length, device, stream)
Prefetches data to device (on stream) asynchronously
cudaMemAdvise(data, length, advice, device)
Advise about usage of given data, advice:

cudaMemAdviseSetReadMostly: Data is mostly read and occasionally written to
cudaMemAdviseSetPreferredLocation: Set preferred location to avoid migrations; first
access will establish mapping
cudaMemAdviseSetAccessedBy: Data is accessed by this device; will pre-map data to
avoid page fault

Use cudaCpuDeviceId for device CPU, or use cudaGetDevice() as usual to retrieve
current GPU device id (default: 0)

Member of the Helmholtz Association 8 August 2018 Slide 13 16



Performance Hints for UM
New API routines

API calls to augment data location knowledge of runtime
cudaMemPrefetchAsync(data, length, device, stream)
Prefetches data to device (on stream) asynchronously
cudaMemAdvise(data, length, advice, device)
Advise about usage of given data, advice:

cudaMemAdviseSetReadMostly: Data is mostly read and occasionally written to
cudaMemAdviseSetPreferredLocation: Set preferred location to avoid migrations; first
access will establish mapping
cudaMemAdviseSetAccessedBy: Data is accessed by this device; will pre-map data to
avoid page fault

Use cudaCpuDeviceId for device CPU, or use cudaGetDevice() as usual to retrieve
current GPU device id (default: 0)

Member of the Helmholtz Association 8 August 2018 Slide 13 16



Hints in Code

void sortfile(FILE *fp, int N) {
char *data;
// ...
cudaMallocManaged(&data, N);

fread(data, 1, N, fp);

cudaMemPrefetchAsync(data, N, device);
kernel<<<...>>>(data, N);
cudaDeviceSynchronize();

host_func(data);
cudaFree(data); }

Member of the Helmholtz Association 8 August 2018 Slide 14 16



Hints in Code

void sortfile(FILE *fp, int N) {
char *data;
// ...
cudaMallocManaged(&data, N);

fread(data, 1, N, fp);

cudaMemPrefetchAsync(data, N, device);
kernel<<<...>>>(data, N);
cudaDeviceSynchronize();

host_func(data);
cudaFree(data); }

Prefetch data to avoid ex-
pensive GPU page faults

Member of the Helmholtz Association 8 August 2018 Slide 14 16



Hints in Code

void sortfile(FILE *fp, int N) {
char *data;
// ...
cudaMallocManaged(&data, N);

fread(data, 1, N, fp);

cudaMemAdvise(data, N, cudaMemAdviseSetReadMostly, device);
cudaMemPrefetchAsync(data, N, device);
kernel<<<...>>>(data, N);
cudaDeviceSynchronize();

host_func(data);
cudaFree(data); }

Prefetch data to avoid ex-
pensive GPU page faults

Read-only copy of data
is created on GPU during
prefetch
→ CPU and GPU reads will
not fault

Member of the Helmholtz Association 8 August 2018 Slide 14 16



Tuning scale_vector_um
Express data movement

Location of code: 3-Unified-Memory/exercises/tasks/scale/
Look at Instructions.md for instructions

1 Show runtime that data should bemigrated to GPU before kernel call
2 Build with make
3 Run with make run

Or srun --gres=gpu -p gpus ./scale_vector_um
4 Generate profile to study your progress – see make profile

See also CUDA C programming guide for details on data usage

Finished early? There’s onemore task in the appendix!

TASK

Member of the Helmholtz Association 8 August 2018 Slide 15 16

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-tuning-usage


Conclusions
What we’ve learned

Unified Memory is productive feature for GPU programming
Unified Memory is implemented differently on Pascal (JURON) and Kepler (JURECA)
With CUDA 8.0, there are new API calls to express data locality
CUDA 9.x and DGX-2: cudaMalloc() across all GPUs, then
cudaMemAdviseSetPreferredHome

21

UNIFIED MEMORY PROVIDES

Single memory view
shared by all GPUs

Automatic migration of data 
between GPUs

User control of data locality

UNIFIED MEMORY + DGX-2

GPU
0

GPU
1

GPU
2

GPU
3

GPU
4

GPU
5

GPU
6

GPU
7

GPU
8

GPU
9

GPU
10

GPU
11

GPU
12

GPU
13

GPU
14

GPU
15

512 GB Unified Memory

Member of the Helmholtz Association 8 August 2018 Slide 16 16



Conclusions
What we’ve learned

Unified Memory is productive feature for GPU programming
Unified Memory is implemented differently on Pascal (JURON) and Kepler (JURECA)
With CUDA 8.0, there are new API calls to express data locality
CUDA 9.x and DGX-2: cudaMalloc() across all GPUs, then
cudaMemAdviseSetPreferredHome

21

UNIFIED MEMORY PROVIDES

Single memory view
shared by all GPUs

Automatic migration of data 
between GPUs

User control of data locality

UNIFIED MEMORY + DGX-2

GPU
0

GPU
1

GPU
2

GPU
3

GPU
4

GPU
5

GPU
6

GPU
7

GPU
8

GPU
9

GPU
10

GPU
11

GPU
12

GPU
13

GPU
14

GPU
15

512 GB Unified Memory Thank you

for your att
ention!

a.herten@fz-juelich.de

Member of the Helmholtz Association 8 August 2018 Slide 16 16

mailto:a.herten@fz-juelich.de


Appendix
Jacobi Task
Glossary

Member of the Helmholtz Association 8 August 2018 Slide 1 6



Jacobi Task
Onemore time…

TASK

Location of code: 3-Unified-Memory/exercises/tasks/jacobi/
See Jiri Kraus’ slides on Unified Memory from 2016 at
3-Unified-Memory/exercises/slides/jkraus-unified_memory-2016.pdf
Short instructions

Avoid data migrations in while loop of Jacobi solver: apply boundary conditions with
provided GPU kernel; try to avoid remaining migrations
Build with make (CUDA needs to be loaded!)
Run with make run
Look at profile – see make profile

Member of the Helmholtz Association 8 August 2018 Slide 2 6



Glossary I

CUDA Computing platform for GPUs from NVIDIA. Provides, among others, CUDA
C/C++. 4, 5, 6, 7, 8, 71, 72, 73

JSC Jülich Supercomputing Centre, the supercomputing institute of
Forschungszentrum Jülich, Germany. 76

JURECA Amulti-purpose supercomputer with 1800 nodes at JSC. 56, 57, 58, 72, 73
JURON One of the two HBP pilot system in Jülich; name derived from Juelich and

Neuron. 50, 51, 52, 53, 54, 55, 56, 57, 58, 72, 73
JUWELS Jülich’s new supercomputer, the successor of JUQUEEN. 50, 51, 52, 53, 54, 55

NVIDIA US technology company creating GPUs. 76, 77

Member of the Helmholtz Association 8 August 2018 Slide 3 6



Glossary II
NVLink NVIDIA’s communication protocol connecting CPU↔ GPU and GPU↔ GPUwith

high bandwidth. 77

P100 A large GPUwith the Pascal architecture from NVIDIA. It employs NVLink as its
interconnect and has fast HBM2memory. 53

Pascal GPU architecture from NVIDIA (announced 2016). 4, 5, 6, 7, 8, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 56, 57, 58, 77

V100 A large GPUwith the Volta architecture from NVIDIA. It employs NVLink 2 as its
interconnect and has fast HBM2memory. Additionally, it features Tensorcores for
Deep Learning and Independent Thread Scheduling. 53

Volta GPU architecture from NVIDIA (announced 2017). 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 77

Member of the Helmholtz Association 8 August 2018 Slide 4 6



Glossary III

CPU Central Processing Unit. 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 48, 62, 63, 64, 65, 66, 67,
70, 77

GPU Graphics Processing Unit. 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 48, 62, 63, 64, 65, 66,
67, 69, 70, 71, 72, 73, 75, 76, 77

HBP Human Brain Project. 76

Member of the Helmholtz Association 8 August 2018 Slide 5 6



References: Images, Graphics I

[1] Martin Oslic. Bug. Freely available at Unsplash. URL:
https://unsplash.com/photos/Qi93Pl5vDRw.

[2] Glenn Dearth and Vyes Venkataraman. Picture: DGX-2 Memory Layout. GTC18 Talk: S8688 –
INSIDE DGX-2. 2018. URL:
http://on-demand.gputechconf.com/gtc/2018/presentation/s8688-
extending-the-connectivity-and-reach-of-the-gpu.pdf.

Member of the Helmholtz Association 8 August 2018 Slide 6 6

https://unsplash.com/photos/Qi93Pl5vDRw
http://on-demand.gputechconf.com/gtc/2018/presentation/s8688-extending-the-connectivity-and-reach-of-the-gpu.pdf
http://on-demand.gputechconf.com/gtc/2018/presentation/s8688-extending-the-connectivity-and-reach-of-the-gpu.pdf

	Outline
	Background on Unified Memory
	History of *gpu Memory
	Unified Memory on Pascal
	Unified Memory on Kepler

	Practical Differences
	Revisiting scale_vector_um Example
	Hints for Performance
	Task

	Appendix
	Appendix
	Jacobi Task
	Glossary

	Glossary
	Acronyms
	References


