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Overview, Outline

Overview
Unified Memory enables easy access to GPU development
But some tuning might be needed for best performance
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Background on Unified Memory
History of GPUMemory
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CPU and GPUMemory
Location, location, location

CPUMemory

CPU

DRAM

Scheduler

. . .

Interconnect

L2

At the Beginning CPU and GPU memory very distinct, own addresses

CUDA 4.0 Unified Virtual Addressing: pointer from same address pool, but
data copy manual

CUDA 6.0 Unified Memory*: Data copy by driver, but whole data at once
CUDA 8.0 Unified Memory (truly): Data copy by driver, page faults

on-demand initiate data migrations (Pascal)
Future Address Translation Service: Omit page faults
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Unified Memory in Code
Vojgjfe Nfnpsz

void sortfile(FILE *fp, int N) {
char *data;
char *data_d;

data = (char *)malloc(N);
cudaMalloc(&data_d, N);

fread(data, 1, N, fp);

cudaMemcpy(data_d, data, N,
cudaMemcpyHostToDevice);↪→

kernel<<<...>>>(data, N);

cudaMemcpy(data, data_d, N,
cudaMemcpyDeviceToHost);↪→

host_func(data);
cudaFree(data_d); free(data); }

void sortfile(FILE *fp, int N) {
char *data;

cudaMallocManaged(&data, N);

fread(data, 1, N, fp);

kernel<<<...>>>(data, N);
cudaDeviceSynchronize();

host_func(data);
cudaFree(data); }
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Implementation Details (on Pascal)
Under the hood

cudaMallocManaged(&ptr, ...);

*ptr = 1;

kernel<<<...>>>(ptr);

Pages populate on first touch
Pages migrate on-demand
GPUmemory over-subscription possible
Concurrent access from CPU and GPU to memory (page-level)
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On-Demand Migration Flow (Pascal, Volta)
GPUMemory

≈0.9 TB/s
SystemMemory

≈0.1 TB/s

Interconnect
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On-Demand Migration Flow (Pascal, Volta)
GPUMemory

≈0.9 TB/s
SystemMemory

≈0.1 TB/s

Interconnect
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Only needed page is copied (≥4 kB)!
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Migration on Kepler
GPUMemory

≈0.3 TB/s
SystemMemory

≈0.1 TB/s

PCI-Express
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Migration on Kepler
GPUMemory

≈0.3 TB/s
SystemMemory

≈0.1 TB/s

PCI-Express
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Kernel
launch
Page fault

not supported
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Implementation before Pascal
Kepler (JURECA), Maxwell, …

Pages populate on GPUwith cudaMallocManaged()
→ Might migrate to CPU if touched there first

Pages migrate in bulk to GPU on kernel launch
No over-subscription possible
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Practical Differences
Revisiting scale_vector_um Example
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Comparing UM on Pascal & Kepler
Different scales

Comparing scale_vector_um on JURON (JUWELS) and JURECA
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Comparing UM on Pascal & Kepler
Different scales

Comparing scale_vector_um on JURON (JUWELS) and JURECA

==109924== Profiling result:
Time(%) Time Calls Avg Min Max Name
100.00% 4.9247ms 1 4.9247ms 4.9247ms 4.9247ms scale(float, float*, float*, int)

==12922== Profiling result:
Time(%) Time Calls Avg Min Max Name
100.00% 136.03us 1 136.03us 136.03us 136.03us scale(float, float*, float*, int)
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Why?!
Shouldn’t P100 and V100 bemuch faster than K80?
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Comparing UM on Pascal & Kepler
What happens?

JURON Kernel is launched, data is needed by kernel, data migrates host→device
⇒ Run time of kernel incorporates time for data transfers

JURECA Data will be needed by kernel – so data migrates host→device before kernel launch
⇒ Run time of kernelwithout any transfers

Implementation on Pascal is the more convenient one
Total run time of whole program does not principally change
Except it gets shorter because of faster architecture
But data transfers sometimes sorted to kernel launch

⇒ What can we do about this?
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Performance Hints for UM
General hints

Keep data local
Prevent migrations at all if data is processed by close processor

Minimize thrashing
Constant migrations hurt performance
Minimize page fault overhead
Fault handling costsO (10µs), stalls execution
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Performance Hints for UM
New API routines

API calls to augment data location knowledge of runtime
cudaMemPrefetchAsync(data, length, device, stream)
Prefetches data to device (on stream) asynchronously

cudaMemAdvise(data, length, advice, device)
Advise about usage of given data, advice:

cudaMemAdviseSetReadMostly: Data is mostly read and occasionally written to
cudaMemAdviseSetPreferredLocation: Set preferred location to avoid migrations; first
access will establish mapping
cudaMemAdviseSetAccessedBy: Data is accessed by this device; will pre-map data to
avoid page fault

Use cudaCpuDeviceId for device CPU, or use cudaGetDevice() as usual to retrieve
current GPU device id (default: 0)
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Hints in Code

void sortfile(FILE *fp, int N) {
char *data;
// ...
cudaMallocManaged(&data, N);

fread(data, 1, N, fp);

cudaMemPrefetchAsync(data, N, device);
kernel<<<...>>>(data, N);
cudaDeviceSynchronize();

host_func(data);
cudaFree(data); }
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Hints in Code

void sortfile(FILE *fp, int N) {
char *data;
// ...
cudaMallocManaged(&data, N);

fread(data, 1, N, fp);

cudaMemAdvise(data, N, cudaMemAdviseSetReadMostly, device);
cudaMemPrefetchAsync(data, N, device);
kernel<<<...>>>(data, N);
cudaDeviceSynchronize();

host_func(data);
cudaFree(data); }

Prefetch data to avoid ex-
pensive GPU page faults

Read-only copy of data
is created on GPU during
prefetch
→ CPU and GPU reads will
not fault
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Tuning scale_vector_um
Express data movement

Location of code: 3-Unified-Memory/exercises/tasks/scale/
Look at Instructions.md for instructions

1 Show runtime that data should bemigrated to GPU before kernel call
2 Build with make
3 Run with make run

Or srun --gres=gpu -p gpus ./scale_vector_um
4 Generate profile to study your progress – see make profile

See also CUDA C programming guide for details on data usage

Finished early? There’s onemore task in the appendix!

TASK
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Conclusions
What we’ve learned

Unified Memory is productive feature for GPU programming
Unified Memory is implemented differently on Pascal (JURON) and Kepler (JURECA)
With CUDA 8.0, there are new API calls to express data locality
CUDA 9.x and DGX-2: cudaMalloc() across all GPUs, then
cudaMemAdviseSetPreferredHome
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Jacobi Task
Glossary
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Jacobi Task
Onemore time…

TASK

Location of code: 3-Unified-Memory/exercises/tasks/jacobi/
See Jiri Kraus’ slides on Unified Memory from 2016 at
3-Unified-Memory/exercises/slides/jkraus-unified_memory-2016.pdf
Short instructions

Avoid data migrations in while loop of Jacobi solver: apply boundary conditions with
provided GPU kernel; try to avoid remaining migrations
Build with make (CUDA needs to be loaded!)
Run with make run
Look at profile – see make profile
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Glossary I

CUDA Computing platform for GPUs from NVIDIA. Provides, among others, CUDA
C/C++. 4, 5, 6, 7, 8, 71, 72, 73

JSC Jülich Supercomputing Centre, the supercomputing institute of
Forschungszentrum Jülich, Germany. 76

JURECA Amulti-purpose supercomputer with 1800 nodes at JSC. 56, 57, 58, 72, 73
JURON One of the two HBP pilot system in Jülich; name derived from Juelich and

Neuron. 50, 51, 52, 53, 54, 55, 56, 57, 58, 72, 73
JUWELS Jülich’s new supercomputer, the successor of JUQUEEN. 50, 51, 52, 53, 54, 55

NVIDIA US technology company creating GPUs. 76, 77
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Glossary II
NVLink NVIDIA’s communication protocol connecting CPU↔ GPU and GPU↔ GPUwith

high bandwidth. 77

P100 A large GPUwith the Pascal architecture from NVIDIA. It employs NVLink as its
interconnect and has fast HBM2memory. 53

Pascal GPU architecture from NVIDIA (announced 2016). 4, 5, 6, 7, 8, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 56, 57, 58, 77

V100 A large GPUwith the Volta architecture from NVIDIA. It employs NVLink 2 as its
interconnect and has fast HBM2memory. Additionally, it features Tensorcores for
Deep Learning and Independent Thread Scheduling. 53

Volta GPU architecture from NVIDIA (announced 2017). 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 77
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Glossary III

CPU Central Processing Unit. 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 48, 62, 63, 64, 65, 66, 67,
70, 77

GPU Graphics Processing Unit. 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 48, 62, 63, 64, 65, 66,
67, 69, 70, 71, 72, 73, 75, 76, 77

HBP Human Brain Project. 76
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