
PRODUCTIVE GPU PROGRAMMINGWITH OPENACC
GSP GPU COURSE 2018
9 August 2018 Andreas Herten Forschungszentrum Jülich, Jülich Supercomputing Centre

Member of the Helmholtz Association

Overview, Outline

What you will learn today
Parallelization strategies with
OpenACC
OpenACC on CPU, GPU

What you will not learn today
Analyze program in-detail
Strategies for complex programs
How to leave the matrix

Member of the Helmholtz Association 9 August 2018 Slide 1 83

Overview, Outline

What you will learn today
Parallelization strategies with
OpenACC
OpenACC on CPU, GPU

What you will not learn today
Analyze program in-detail
Strategies for complex programs
How to leave the matrix

OpenACC Introduction
OpenACC on CPU
OpenACC: GPU Optimizations
OpenACC with GPUs
MPI 101
OpenACC, GPUs, and MPI
Hands-on
Lecture

Member of the Helmholtz Association 9 August 2018 Slide 1 83

Overview, Outline

What you will learn today
Parallelization strategies with
OpenACC
OpenACC on CPU, GPU

What you will not learn today
Analyze program in-detail
Strategies for complex programs
How to leave the matrix

OpenACC Introduction
About OpenACC
Modus Operandi
OpenACC’s Models
Parallelization Workflow

First Steps in OpenACC
Example Program
Identify Parallelism
Parallelize Loops

parallel
loops
kernels

OpenACC on the GPU
Compiling on GPU
Data Transfers

Portability
Clause: copy

Data Locality
Analyse Flow
data
enter data
Pinned

Appendix
List of Tasks

Member of the Helmholtz Association 9 August 2018 Slide 1 83

OpenACC Introduction

Member of the Helmholtz Association 9 August 2018 Slide 2 83

Primer on GPU Computing

Application

Libraries Directives
Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Member of the Helmholtz Association 9 August 2018 Slide 3 83

Primer on GPU Computing

Application

Libraries Directives
Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Member of the Helmholtz Association 9 August 2018 Slide 3 83

Primer on GPU Computing

Application

Libraries Directives
Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Member of the Helmholtz Association 9 August 2018 Slide 3 83

Primer on GPU Computing

Application

Libraries Directives
Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Member of the Helmholtz Association 9 August 2018 Slide 3 83

Primer on GPU Computing

Application

Libraries Directives
Programming
LanguagesOpenACC

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Member of the Helmholtz Association 9 August 2018 Slide 3 83

About OpenACC
History
2011 OpenACC 1.0 specification is released

NVIDIA, Cray, PGI, CAPS
2013 OpenACC 2.0: More functionality, portability
2015 OpenACC 2.5: Enhancements, clarifications
2017 OpenACC 2.6: Deep copy, …

→ https://www.openacc.org/ (see also: Best practice guide)

Support
Compiler: PGI, GCC, Cray, Sunway
Languages: C/C++, Fortran

Member of the Helmholtz Association 9 August 2018 Slide 4 83

https://www.openacc.org/sites/default/files/inline-files/OpenACC_1_0_specification.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC_2_0_specification.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC_2pt5.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC.2.6.final.pdf
https://www.openacc.org/
http://www.openacc.org/sites/default/files/inline-files/OpenACC_Programming_Guide_0.pdf

Open{MP↔ACC}
Everything’s connected

OpenACCmodeled after OpenMP …
…but specific for accelerators
Might eventually be absorbed into OpenMP
But OpenMP>4.0 also has offloading feature

OpenACCmore descriptive, OpenMPmore prescriptive
Basic principle same: Fork/join model
Master thread launches parallel child threads; merge after execution

master masterfo
rk

parallel

jo
in

OpenMP

master masterfo
rk

parallel

jo
in

OpenACC

Member of the Helmholtz Association 9 August 2018 Slide 5 83

Open{MP↔ACC}
Everything’s connected

OpenACCmodeled after OpenMP …
…but specific for accelerators
Might eventually be absorbed into OpenMP
But OpenMP>4.0 also has offloading feature

OpenACCmore descriptive, OpenMPmore prescriptive
Basic principle same: Fork/join model
Master thread launches parallel child threads; merge after execution

master masterfo
rk

parallel
jo
in

OpenMP

master masterfo
rk

parallel

jo
in

OpenACC

Member of the Helmholtz Association 9 August 2018 Slide 5 83

Open{MP↔ACC}
Everything’s connected

OpenACCmodeled after OpenMP …
…but specific for accelerators
Might eventually be absorbed into OpenMP
But OpenMP>4.0 also has offloading feature

OpenACCmore descriptive, OpenMPmore prescriptive
Basic principle same: Fork/join model
Master thread launches parallel child threads; merge after execution

master masterfo
rk

parallel
jo
in

OpenMP

master masterfo
rk

parallel

jo
in

OpenACC

Member of the Helmholtz Association 9 August 2018 Slide 5 83

Modus Operandi
Three-step program

1 Annotate code with directives, indicating parallelism
2 OpenACC-capable compiler generates accelerator-specific code
3 $uccess

Member of the Helmholtz Association 9 August 2018 Slide 6 83

1 Directives
pragmatic

Compiler directives state intend to compiler
C/C++
#pragma acc kernels
for (int i = 0; i < 23; i++)
// ...

Fortran
!$acc kernels
do i = 1, 24
! ...
!$acc end kernels

Ignored by compiler which does not understand OpenACC
High level programmingmodel for many-core machines, especially accelerators
OpenACC: Compiler directives, library routines, environment variables
Portable across host systems and accelerator architectures

Member of the Helmholtz Association 9 August 2018 Slide 7 83

2 Compiler
Simple and abstracted

Compiler support
PGI Best performance, great support, free
GCC Beta, limited coverage, OSS
Cray ???

Trust compiler to generate intended parallelism; always check status output!
No need to know ins’n’outs of accelerator; leave it to expert compiler engineers⋆

One code can target different accelerators: GPUs, or evenmulti-core CPUs→ Portability

⋆: Eventually you want to tune for device; but that’s possible

Member of the Helmholtz Association 9 August 2018 Slide 8 83

3 $uccess
Iteration is key

Serial to parallel: fast
Serial to fast parallel: more time needed
Start simple→ refine

⇒ Productivity
Because of generalness: Sometimes not last bit of hardware performance accessible
But: Use OpenACC together with other accelerator-targeting techniques (CUDA, libraries,
…)

Expose
Parallelism

CompileMeasure

Member of the Helmholtz Association 9 August 2018 Slide 9 83

OpenACC Accelerator Model
For computation andmemory spaces

Main program executes on host
Device code is transferred to accelerator
Execution on accelerator is started
Host waits until return (except: async)

Two separate memory spaces; data
transfers back and forth

Transfers hidden from programmer
Memories not coherent!
Compiler helps; GPU runtime helps

Start main
program

Wait for code

Run code

Finish code
Return to host

Transfer

W
ai
t

Host Memory Device
Memory

DMA Transfers

Member of the Helmholtz Association 9 August 2018 Slide 10 83

OpenACC Programming Model
A binary perspective

OpenACC interpretation needs to be activated as compile flag
PGI pgcc -acc [-ta=tesla|-ta=multicore]
GCC gcc -fopenacc
→ Ignored by incapable compiler!

Additional flags possible to improve/modify compilation
-ta=tesla:cc60 Use compute capability 6.0

-ta=tesla:lineinfo Add source code correlation into binary
-ta=tesla:managed Use unified memory

-fopenacc-dim=geom Use geom configuration for threads

Member of the Helmholtz Association 9 August 2018 Slide 11 83

A Glimpse of OpenACC

#pragma acc data copy(x[0:N],y[0:N])
#pragma acc parallel loop
{

for (int i=0; i<N; i++) {
x[i] = 1.0;
y[i] = 2.0;

}
for (int i=0; i<N; i++) {

y[i] = i*x[i]+y[i];
}

}

Member of the Helmholtz Association 9 August 2018 Slide 12 83

Parallelization Workflow

Identify available parallelism

Parallelize loops with OpenACC

Optimize data locality

Optimize loop performance

Member of the Helmholtz Association 9 August 2018 Slide 13 83

First Steps in OpenACC

Member of the Helmholtz Association 9 August 2018 Slide 14 83

Jacobi Solver
Algorithmic description

Example for acceleration: Jacobi solver
Iterative solver, converges to correct value
Each iteration step: compute average of neighboring points
Example: 2D Poisson equation: ∇2A(x, y) = B(x, y)

Ai,j+1

Ai−1,j

Ai,j−1

Ai+1,j

Data Point
Boundary Point
Stencil

Ak+1(i, j) = −
1
4
(B(i, j)− (Ak(i− 1, j) + Ak(i, j+ 1),+Ak(i+ 1, j) + Ak(i, j− 1)))

Member of the Helmholtz Association 9 August 2018 Slide 15 83

Jacobi Solver
Source code

while (error > tol && iter < iter_max) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
}}
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}
Member of the Helmholtz Association 9 August 2018 Slide 16 83

Jacobi Solver
Source code

while (error > tol && iter < iter_max) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
}}
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Iterate until converged

Member of the Helmholtz Association 9 August 2018 Slide 16 83

Jacobi Solver
Source code

while (error > tol && iter < iter_max) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
}}
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Iterate until converged

Iterate across
matrix elements

Member of the Helmholtz Association 9 August 2018 Slide 16 83

Jacobi Solver
Source code

while (error > tol && iter < iter_max) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
}}
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Iterate until converged

Iterate across
matrix elements

Calculate new value
from neighbors

Member of the Helmholtz Association 9 August 2018 Slide 16 83

Jacobi Solver
Source code

while (error > tol && iter < iter_max) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
}}
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Iterate until converged

Iterate across
matrix elements

Calculate new value
from neighbors

Accumulate error

Member of the Helmholtz Association 9 August 2018 Slide 16 83

Jacobi Solver
Source code

while (error > tol && iter < iter_max) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
}}
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Iterate until converged

Iterate across
matrix elements

Calculate new value
from neighbors

Accumulate error

Swap input/output

Member of the Helmholtz Association 9 August 2018 Slide 16 83

Jacobi Solver
Source code

while (error > tol && iter < iter_max) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
}}
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Iterate until converged

Iterate across
matrix elements

Calculate new value
from neighbors

Accumulate error

Swap input/output

Set boundary conditions

Member of the Helmholtz Association 9 August 2018 Slide 16 83

Parallelization Workflow

Identify available parallelism

Parallelize loops with OpenACC

Optimize data locality

Optimize loop performance

Member of the Helmholtz Association 9 August 2018 Slide 17 83

Profiling
Profile

[…] premature optimization is the root of all evil.

Yet we should not pass up our [optimization] opportunities […]

– Donald Knuth [2]

Investigate hot spots of your program!
→ Profile!

Many tools, many levels: perf, PAPI, Score-P, Intel Advisor, NVIDIA Visual Profiler, …
Here: Examples from PGI

Member of the Helmholtz Association 9 August 2018 Slide 18 83

Profiling
Profile

[…] premature optimization is the root of all evil.
Yet we should not pass up our [optimization] opportunities […]
– Donald Knuth [2]

Investigate hot spots of your program!
→ Profile!

Many tools, many levels: perf, PAPI, Score-P, Intel Advisor, NVIDIA Visual Profiler, …
Here: Examples from PGI

Member of the Helmholtz Association 9 August 2018 Slide 18 83

Profile of Application
Info during compilation

$ pgcc -DUSE_DOUBLE -Minfo=all,intensity -fast -Minfo=ccff -Mprof=ccff
poisson2d_reference.o poisson2d.c -o poisson2d
poisson2d.c:
main:

68, Generated vector simd code for the loop
FMA (fused multiply-add) instruction(s) generated

98, FMA (fused multiply-add) instruction(s) generated
105, Loop not vectorized: data dependency
123, Loop not fused: different loop trip count

Loop not vectorized: data dependency
Loop unrolled 8 times

Automated optimization of compiler, due to -fast
Vectorization, FMA, unrolling

Member of the Helmholtz Association 9 August 2018 Slide 19 83

Profile of Application
Info during run

$ pgprof --cpu-profiling on [...] ./poisson2d
======== CPU profiling result (flat):
Time(%) Time Name
77.52% 999.99ms main (poisson2d.c:148 0x6d8)
9.30% 120ms main (0x704)
7.75% 99.999ms main (0x718)
0.78% 9.9999ms main (poisson2d.c:128 0x348)
0.78% 9.9999ms main (poisson2d.c:123 0x398)
0.78% 9.9999ms __xlmass_expd2 (0xffcc011c)
0.78% 9.9999ms __c_mcopy8 (0xffcc0054)
0.78% 9.9999ms __xlmass_expd2 (0xffcc0034)

======== Data collected at 100Hz frequency

78% in main()
Since everything is in main – limited helpfulness
Let’s look into main!

Member of the Helmholtz Association 9 August 2018 Slide 20 83

Code Independency Analysis
Independence is key

while (error > tol && iter < iter_max) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
}}
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Data dependency
between iterations

Independent loop
iterations

Independent loop
iterations

Independent loop
iterations

Member of the Helmholtz Association 9 August 2018 Slide 21 83

Code Independency Analysis
Independence is key

while (error > tol && iter < iter_max) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
}}
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Data dependency
between iterations

Independent loop
iterations

Independent loop
iterations

Independent loop
iterations

Member of the Helmholtz Association 9 August 2018 Slide 21 83

Parallelization Workflow

Identify available parallelism

Parallelize loops with OpenACC

Optimize data locality

Optimize loop performance

Member of the Helmholtz Association 9 August 2018 Slide 22 83

Parallel Loops: Parallel
Maybe the secondmost important directive

Programmer identifies block containing parallelism
→ compiler generates parallel code (kernel)
Program launch creates gangs of parallel threads on parallel device
Implicit barrier at end of parallel region
Each gang executes same code sequentially

OpenACC: parallel

#pragma acc parallel [clause, [, clause] ...] newline
{structured block}

Member of the Helmholtz Association 9 August 2018 Slide 23 83

Parallel Loops: Parallel
Clauses

Diverse clauses to augment the parallel region

private(var) A copy of variables var is made for each gang
firstprivate(var) Same as private, except varwill initialized with value from host

if(cond) Parallel region will execute on accelerator only if cond is true
reduction(op:var) Reduction is performed on variable varwith operation op; supported:

+ * max min …
async[(int)] No implicit barrier at end of parallel region

Member of the Helmholtz Association 9 August 2018 Slide 24 83

Parallel Loops: Loops
Maybe the third most important directive

Programmer identifies loop eligible for parallelization
Directive must be directly before loop
Optional: Describe type of parallelism

OpenACC: loop

#pragma acc loop [clause, [, clause] ...] newline
{structured block}

Member of the Helmholtz Association 9 August 2018 Slide 25 83

Parallel Loops: Loops
Clauses

independent Iterations of loop are data-independent (implied if in parallel region
(and no seq or auto))

collapse(int) Collapse int tightly-nested loops
seq This loop is to be executed sequentially (not parallel)

tile(int[,int]) Split loops into loops over tiles of the full size
auto Compiler decides what to do

Member of the Helmholtz Association 9 August 2018 Slide 26 83

Parallel Loops: Parallel Loops
Maybe themost important directive

Combined directive: shortcut
Because its used so often
Any clause that is allowed on parallel or loop allowed
Restriction: May not appear in body of another parallel region

OpenACC: parallel loop

#pragma acc parallel loop [clause, [, clause] ...]

Member of the Helmholtz Association 9 August 2018 Slide 27 83

Parallel Loops Example

double sum = 0.0;
#pragma acc parallel loop
for (int i=0; i<N; i++) {

x[i] = 1.0;
y[i] = 2.0;

}
#pragma acc parallel loop reduction(+:sum)
{
for (int i=0; i<N; i++) {

y[i] = i*x[i]+y[i];
sum+=y[i];

}
}

Kernel 1

Kernel 2

Member of the Helmholtz Association 9 August 2018 Slide 28 83

Parallel Jacobi
Add parallelism

Add OpenACC parallelism tomain loop in Jacobi solver source code (CPU parallelism)
→ Congratulations, you are a parallel developer!

Task 2: A First Parallel Loop

Change to Task2/ directory
Compile: make; see README.md
Submit run to the batch system: make run
Adapt the bsub call and run with other number of iterations, matrix sizes
Change number of CPU threads via $ACC_NUM_CORES or $OMP_NUM_THREADS

? What’s your speed-up? What’s the best configuration for cores?
E Compare it to OpenMP

TASK 2

Member of the Helmholtz Association 9 August 2018 Slide 29 83

Parallel Jacobi
Source Code

110 #pragma acc parallel loop reduction(max:error)
111 for (int ix = ix_start; ix < ix_end; ix++)
112 {
113 for (int iy = iy_start; iy < iy_end; iy++)
114 {
115 Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] - (A[iy*nx+ix+1] + A[iy*nx+ix-1]
116 + A[(iy-1)*nx+ix] +

A[(iy+1)*nx+ix]));↪→

117 error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
118 }
119 }

Member of the Helmholtz Association 9 August 2018 Slide 30 83

Parallel Jacobi
Compilation result

$ make
pgcc -DUSE_DOUBLE -Minfo=accel -fast -acc -ta=multicore poisson2d.c poisson2d_reference.o
-o poisson2d

poisson2d.c:
main:

110, Generating Multicore code
111, #pragma acc loop gang

110, Generating reduction(max:error)
113, Accelerator restriction: size of the GPU copy of A,rhs,Anew is unknown

Complex loop carried dependence of Anew-> prevents parallelization
Loop carried dependence of Anew-> prevents parallelization
Loop carried backward dependence of Anew-> prevents vectorization

Member of the Helmholtz Association 9 August 2018 Slide 31 83

Parallel Jacobi
Run result

$ make run
srun --partition=gpus --gres=gpu:1 ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 60.5136 s, This: 8.2483 s, speedup: 7.34

Member of the Helmholtz Association 9 August 2018 Slide 32 83

Parallel Jacobi: OpenMP E

OpenMP pragma is quite similar
#pragma acc parallel loop reduction(max:error)
#pragma omp parallel for reduction(max:error)
for (int ix = ix_start; ix < ix_end; ix++) { ... }

PGI’s compiler output is a bit different (but states the same)

$ pgcc -DUSE_DOUBLE -Minfo=mp -fast -mp poisson2d.c poisson2d_reference.o -o poisson2d
poisson2d.c:
main:

112, Parallel region activated
Parallel loop activated with static block schedule

123, Parallel region terminated
Begin critical section
End critical section
Barrier

Run time should be very similar!
Member of the Helmholtz Association 9 August 2018 Slide 33 83

More Parallelism: Kernels
More freedom for compiler

Kernels directive: second way to expose parallelism
Regionmay contain parallelism
Compiler determines parallelization opportunities

→ More freedom for compiler
Rest: Same as for parallel

OpenACC: kernels

#pragma acc kernels [clause, [, clause] ...]

Member of the Helmholtz Association 9 August 2018 Slide 34 83

Kernels Example

double sum = 0.0;
#pragma acc kernels
{
for (int i=0; i<N; i++) {

x[i] = 1.0;
y[i] = 2.0;

}
for (int i=0; i<N; i++) {

y[i] = i*x[i]+y[i];
sum+=y[i];

}
}

Kernels created here

Member of the Helmholtz Association 9 August 2018 Slide 35 83

kernels vs. parallel
Both approaches equally valid; can perform equally well

kernels
Compiler performs parallel analysis
Can cover large area of code with single directive
Gives compiler additional leeway

parallel
Requires parallel analysis by programmer
Will also parallelize what compiler maymiss
More explicit
Similar to OpenMP

Both regions may not contain other kernels/parallel regions
No braunching into or out
Programmust not depend on order of evaluation of clauses
At most: One if clause

Member of the Helmholtz Association 9 August 2018 Slide 36 83

kernels vs. parallel
Both approaches equally valid; can perform equally well
kernels

Compiler performs parallel analysis
Can cover large area of code with single directive
Gives compiler additional leeway

parallel
Requires parallel analysis by programmer
Will also parallelize what compiler maymiss
More explicit
Similar to OpenMP

Both regions may not contain other kernels/parallel regions
No braunching into or out
Programmust not depend on order of evaluation of clauses
At most: One if clause

Member of the Helmholtz Association 9 August 2018 Slide 36 83

kernels vs. parallel
Both approaches equally valid; can perform equally well
kernels

Compiler performs parallel analysis
Can cover large area of code with single directive
Gives compiler additional leeway

parallel
Requires parallel analysis by programmer
Will also parallelize what compiler maymiss
More explicit
Similar to OpenMP

Both regions may not contain other kernels/parallel regions
No braunching into or out
Programmust not depend on order of evaluation of clauses
At most: One if clause

Member of the Helmholtz Association 9 August 2018 Slide 36 83

OpenACC on the GPU

Member of the Helmholtz Association 9 August 2018 Slide 37 83

Changes for GPU-OpenACC
Immensely complicated changes

Necessary for previous code to run on GPU: -ta=tesla instead of -ta=multicore

⇒ That’s it!

But we can optimize!
First: A task

Member of the Helmholtz Association 9 August 2018 Slide 38 83

Changes for GPU-OpenACC
Immensely complicated changes

Necessary for previous code to run on GPU: -ta=tesla instead of -ta=multicore
⇒ That’s it!

But we can optimize!
First: A task

Member of the Helmholtz Association 9 August 2018 Slide 38 83

Changes for GPU-OpenACC
Immensely complicated changes

Necessary for previous code to run on GPU: -ta=tesla instead of -ta=multicore
⇒ That’s it!

But we can optimize!

First: A task

Member of the Helmholtz Association 9 August 2018 Slide 38 83

Changes for GPU-OpenACC
Immensely complicated changes

Necessary for previous code to run on GPU: -ta=tesla instead of -ta=multicore
⇒ That’s it!

But we can optimize!
First: A task

Member of the Helmholtz Association 9 August 2018 Slide 38 83

Parallel Jacobi on GPU
More parallelism, more corrres

Add OpenACC parallelism to other loops of while (L:123 – L:141)
Use either kernels or parallel
Make sure to use -ta=teslawhen compiling.

Task 3: More Parallel Loops on GPU

Change to Task3/ directory
Compile: make
Submit parallel run to the batch system: make run

? What’s your speed-up?

TASK 3

Member of the Helmholtz Association 9 August 2018 Slide 39 83

Parallel Jacobi II
Compilation result

$ make
pgcc -DUSE_DOUBLE -Minfo=accel -fast -acc -ta=tesla:cc70,managed poisson2d.c poisson2d_reference.o -o poisson2d
poisson2d.c:
main:

109, Accelerator kernel generated
Generating Tesla code

109, Generating reduction(max:error)
110, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
112, #pragma acc loop seq

109, ...
121, Accelerator kernel generated

Generating Tesla code
124, #pragma acc loop gang /* blockIdx.x */
126, #pragma acc loop vector(128) /* threadIdx.x */

121, Generating implicit copyin(Anew[:])
Generating implicit copyout(A[:])

126, Loop is parallelizable
133, Accelerator kernel genera...

Member of the Helmholtz Association 9 August 2018 Slide 40 83

Parallel Jacobi II
Run result

$ make run
srun --partition=gpus --gres=gpu:1 ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 40.3299 s, This: 0.3243 s, speedup: 124.36

Member of the Helmholtz Association 9 August 2018 Slide 41 83

Parallel Jacobi II
Run result

$ make run
srun --partition=gpus --gres=gpu:1 ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 40.3299 s, This: 0.3243 s, speedup: 124.36

Done?!

Member of the Helmholtz Association 9 August 2018 Slide 41 83

Parallel Jacobi
while (error > tol && iter < iter_max) {

error = 0.0;
#pragma acc parallel loop reduction(max:error)
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
}}
#pragma acc parallel loop
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
#pragma acc parallel loop
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Member of the Helmholtz Association 9 August 2018 Slide 42 83

Automatic Data Transfers

Up to now: We did not care about data transfers
Compiler and runtime care
Magic keyword: -ta=tesla:managed
Only feature of (recent) NVIDIA GPUs!

Member of the Helmholtz Association 9 August 2018 Slide 43 83

NVIDIA GPUMemory Spaces
Location, location, location

CPUMemory

CPU

DRAM

Scheduler

. . .

Interconnect

L2

At the Beginning CPU and GPU memory very distinct, own addresses

CUDA 4.0 Unified Virtual Addressing: pointer from same address pool,
but data copy manual

CUDA 6.0 Unified Memory*: Data copy by driver, but whole data at
once (Kepler)

CUDA 8.0 Unified Memory (truly): Data copy by driver, page faults
on-demand initiate data migrations (Pascal)

Member of the Helmholtz Association 9 August 2018 Slide 44 83

NVIDIA GPUMemory Spaces
Location, location, location

CPUMemory

CPU

DRAM

Scheduler

. . .

Interconnect

L2

Unified
Virtual

Addressing

At the Beginning CPU and GPU memory very distinct, own addresses

CUDA 4.0 Unified Virtual Addressing: pointer from same address pool,
but data copy manual

CUDA 6.0 Unified Memory*: Data copy by driver, but whole data at
once (Kepler)

CUDA 8.0 Unified Memory (truly): Data copy by driver, page faults
on-demand initiate data migrations (Pascal)

Member of the Helmholtz Association 9 August 2018 Slide 44 83

NVIDIA GPUMemory Spaces
Location, location, location

CPUMemory

CPU

DRAM

Scheduler

. . .

Interconnect

L2

Unified
Memory

At the Beginning CPU and GPU memory very distinct, own addresses

CUDA 4.0 Unified Virtual Addressing: pointer from same address pool,
but data copy manual

CUDA 6.0 Unified Memory*: Data copy by driver, but whole data at
once (Kepler)

CUDA 8.0 Unified Memory (truly): Data copy by driver, page faults
on-demand initiate data migrations (Pascal)

Member of the Helmholtz Association 9 August 2018 Slide 44 83

NVIDIA GPUMemory Spaces
Location, location, location

CPUMemory

CPU

DRAM

Scheduler

. . .

Interconnect

L2

Unified
Memory

At the Beginning CPU and GPU memory very distinct, own addresses

CUDA 4.0 Unified Virtual Addressing: pointer from same address pool,
but data copy manual

CUDA 6.0 Unified Memory*: Data copy by driver, but whole data at
once (Kepler)

CUDA 8.0 Unified Memory (truly): Data copy by driver, page faults
on-demand initiate data migrations (Pascal)

Member of the Helmholtz Association 9 August 2018 Slide 44 83

Portability
Managedmemory: Only NVIDIA GPU feature
Great OpenACC features: Portability

→ Code should also be fast without -ta=tesla:managed!
Let’s remove it from compile flags!

$ make
pgcc -c -DUSE_DOUBLE -Minfo=accel -fast -acc -ta=tesla:cc60
poisson2d_reference.c -o poisson2d_reference.o
poisson2d.c:
PGC-S-0155-Compiler failed to translate accelerator region
(see -Minfo messages): Could not find allocated-variable index for
symbol (poisson2d.c: 110)
...
PGC/power Linux 17.4-0: compilation completed with severe errors

Member of the Helmholtz Association 9 August 2018 Slide 45 83

Portability
Managedmemory: Only NVIDIA GPU feature
Great OpenACC features: Portability

→ Code should also be fast without -ta=tesla:managed!
Let’s remove it from compile flags!

$ make
pgcc -c -DUSE_DOUBLE -Minfo=accel -fast -acc -ta=tesla:cc60
poisson2d_reference.c -o poisson2d_reference.o
poisson2d.c:
PGC-S-0155-Compiler failed to translate accelerator region
(see -Minfo messages): Could not find allocated-variable index for
symbol (poisson2d.c: 110)
...
PGC/power Linux 17.4-0: compilation completed with severe errors

Member of the Helmholtz Association 9 August 2018 Slide 45 83

Copy Statements
Compiler implicitly created copy clauses to copy data to device

134, Generating implicit copyin(A[:])
Generating implicit copyout(A[nx*(ny-1)+1:nx-2])

It couldn’t determine length of copied data…
…but before: no problem – Unified Memory!

Now: Problem! We need to give that information! (see also later)

OpenACC: copy

#pragma acc parallel copy(A[start:end])
Also: copyin(B[s:e]) copyout(C[s:e]) present(D[s:e]) create(E[s:e])

Member of the Helmholtz Association 9 August 2018 Slide 46 83

Copy Statements
Compiler implicitly created copy clauses to copy data to device

134, Generating implicit copyin(A[:])
Generating implicit copyout(A[nx*(ny-1)+1:nx-2])

It couldn’t determine length of copied data…
…but before: no problem – Unified Memory!
Now: Problem! We need to give that information! (see also later)

OpenACC: copy

#pragma acc parallel copy(A[start:end])
Also: copyin(B[s:e]) copyout(C[s:e]) present(D[s:e]) create(E[s:e])

Member of the Helmholtz Association 9 August 2018 Slide 46 83

Data Copies
Get that data!

Add copy clause to parallel regions
Check correctness with Visual Profiler

Task 4: Data Copies

Change to Task4/ directory
Work on TODOs
Compile: make
Submit parallel run to the batch system: make run

? What’s your speed-up?

TASK 4

Member of the Helmholtz Association 9 August 2018 Slide 47 83

Data Copies
Compiler Output

$ make
pgcc -DUSE_DOUBLE -Minfo=accel -fast -acc -ta=tesla:cc70 poisson2d.c poisson2d_reference.o -o poisson2d
poisson2d.c:
main:

109, Generating copy(A[:ny*nx],Anew[:ny*nx],rhs[:ny*nx])
...

121, Generating copy(Anew[:ny*nx],A[:ny*nx])
...

131, Generating copy(A[:ny*nx])
Accelerator kernel generated
Generating Tesla code

132, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
137, Generating copy(A[:ny*nx])

Accelerator kernel generated
Generating Tesla code

138, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

Member of the Helmholtz Association 9 August 2018 Slide 48 83

Data Copies
Run Result

$ make run
srun --partition=gpus --gres=gpu:1 ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 60.0229 s, This: 69.5278 s, speedup: 0.86

Member of the Helmholtz Association 9 August 2018 Slide 49 83

Data Copies
Run Result

$ make run
srun --partition=gpus --gres=gpu:1 ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 60.0229 s, This: 69.5278 s, speedup: 0.86

Slower?!
Why?

Member of the Helmholtz Association 9 August 2018 Slide 49 83

PGI/NVIDIA Visual Profiler

Member of the Helmholtz Association 9 August 2018 Slide 50 83

Jacboi in Visual Profiler
Zoom in to kernel calls

Member of the Helmholtz Association 9 August 2018 Slide 51 83

Parallelization Workflow

Identify available parallelism

Parallelize loops with OpenACC

Optimize data locality

Optimize loop performance

Member of the Helmholtz Association 9 August 2018 Slide 52 83

Analyze Jacobi Data Flow
In code

while (error > tol && iter < iter_max) {
error = 0.0;

A, Anew resident on host

iter++
}

#pragma acc parallel loop

for (int ix = ix_start; ix < ix_end; ix++)
{↪→
for (int iy = iy_start; iy < iy_end;

iy++) {↪→
// ...

}}

Member of the Helmholtz Association 9 August 2018 Slide 53 83

Analyze Jacobi Data Flow
In code

while (error > tol && iter < iter_max) {
error = 0.0;

A, Anew resident on host

iter++
}

#pragma acc parallel loop

A, Anew resident on device
for (int ix = ix_start; ix < ix_end; ix++)

{↪→
for (int iy = iy_start; iy < iy_end;

iy++) {↪→
// ...

}}

copy

Member of the Helmholtz Association 9 August 2018 Slide 53 83

Analyze Jacobi Data Flow
In code

while (error > tol && iter < iter_max) {
error = 0.0;

A, Anew resident on host

iter++
}

#pragma acc parallel loop

A, Anew resident on device
for (int ix = ix_start; ix < ix_end; ix++)

{↪→
for (int iy = iy_start; iy < iy_end;

iy++) {↪→
// ...

}}

A, Anew resident on device

copy

Member of the Helmholtz Association 9 August 2018 Slide 53 83

Analyze Jacobi Data Flow
In code

while (error > tol && iter < iter_max) {
error = 0.0;

A, Anew resident on host

A, Anew resident on host

iter++
}

#pragma acc parallel loop

A, Anew resident on device
for (int ix = ix_start; ix < ix_end; ix++)

{↪→
for (int iy = iy_start; iy < iy_end;

iy++) {↪→
// ...

}}

A, Anew resident on device

copy

Member of the Helmholtz Association 9 August 2018 Slide 53 83

Analyze Jacobi Data Flow
In code

while (error > tol && iter < iter_max) {
error = 0.0;

A, Anew resident on host

A, Anew resident on host

iter++
}

#pragma acc parallel loop

A, Anew resident on device
for (int ix = ix_start; ix < ix_end; ix++)

{↪→
for (int iy = iy_start; iy < iy_end;

iy++) {↪→
// ...

}}

A, Anew resident on device

copy

Member of the Helmholtz Association 9 August 2018 Slide 53 83

Analyze Jacobi Data Flow
In code

while (error > tol && iter < iter_max) {
error = 0.0;

A, Anew resident on host

A, Anew resident on host

iter++
}

#pragma acc parallel loop

A, Anew resident on device
for (int ix = ix_start; ix < ix_end; ix++)

{↪→
for (int iy = iy_start; iy < iy_end;

iy++) {↪→
// ...

}}

A, Anew resident on device

copy

Copies are done
in each iteration!

Member of the Helmholtz Association 9 August 2018 Slide 53 83

Data Regions
Tomanually specify data locations: data construct

Defines region of code in which data remains on device
Data is shared among all kernels in region
Explicit data transfers

OpenACC: data

#pragma acc data [clause, [, clause] ...]

Member of the Helmholtz Association 9 August 2018 Slide 54 83

Data Regions
Clauses

Clauses to augment the data regions

copy(var) Allocates memory of var on GPU, copies data to GPU at beginning of region,
copies data to host at end of region
Specifies size of var: var[lowerBound:size]

copyin(var) Allocates memory of var on GPU, copies data to GPU at beginning of region
copyout(var) Allocates memory of var on GPU, copies data to host at end of region
create(var) Allocates memory of var on GPU

present(var) Data of var is not copies automatically to GPU but considered present

Member of the Helmholtz Association 9 August 2018 Slide 55 83

Data Region Example

#pragma acc data copyout(y[0:N]) create(x[0:N])
{
double sum = 0.0;
#pragma acc parallel loop
for (int i=0; i<N; i++) {

x[i] = 1.0;
y[i] = 2.0;

}
#pragma acc parallel loop
for (int i=0; i<N; i++) {

y[i] = i*x[i]+y[i];
}
}

Member of the Helmholtz Association 9 August 2018 Slide 56 83

Data Regions II
Looser regions: enter data directive

Define data regions, but not for structured block
Closest to cudaMemcpy()
Still, explicit data transfers

OpenACC: enter data

#pragma acc enter data [clause, [, clause] ...]
#pragma acc exit data [clause, [, clause] ...]

Member of the Helmholtz Association 9 August 2018 Slide 57 83

Data Region
More parallelism, Data locality

Add data regions such that all data resides on device during iterations
Optional: See your success in Visual Profiler

Task 5: Data Region

Change to Task5/ directory
Work on TODOs
Compile: make
Submit parallel run to the batch system: make run

? What’s your speed-up?
Generate profile with make profile_tofile

TASK 5

Member of the Helmholtz Association 9 August 2018 Slide 58 83

Parallel Jacobi II
Source Code

105 #pragma acc data copy(A[0:nx*ny]) copyin(rhs[0:nx*ny]) create(Anew[0:nx*ny])
106 while (error > tol && iter < iter_max)
107 {
108 error = 0.0;
109
110 // Jacobi kernel
111 #pragma acc parallel loop reduction(max:error)
112 for (int ix = ix_start; ix < ix_end; ix++)
113 {
114 for (int iy = iy_start; iy < iy_end; iy++)
115 {
116 Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] - (A[iy*nx+ix+1] + A[iy*nx+ix-1]
117 + A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));
118 error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
119 }
120 }
121
122 // A <-> Anew
123 #pragma acc parallel loop
124 for (int iy = iy_start; iy < iy_end; iy++)
125 // …
126 }

Member of the Helmholtz Association 9 August 2018 Slide 59 83

Parallel Jacobi II
Compilation result

$ make
pgcc -DUSE_DOUBLE -Minfo=accel -fast -acc -ta=tesla:cc70 poisson2d.c poisson2d_reference.o
-o poisson2d

poisson2d.c:
poisson2d.c:
main:

105, Generating copyin(rhs[:ny*nx])
Generating create(Anew[:ny*nx])
Generating copy(A[:ny*nx])

111, Accelerator kernel generated
Generating Tesla code
111, Generating reduction(max:error)
112, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
114, #pragma acc loop seq

114, Complex loop carried dependence of Anew-> prevents parallelization
Loop carried dependence of Anew-> prevents parallelization

Member of the Helmholtz Association 9 August 2018 Slide 60 83

Parallel Jacobi II
Run result

$ make run
srun --partition=gpus --gres=gpu:1 ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 59.5508 s, This: 0.3328 s, speedup: 178.95

Member of the Helmholtz Association 9 August 2018 Slide 61 83

Parallel Jacobi II
Run result

$ make run
srun --partition=gpus --gres=gpu:1 ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 59.5508 s, This: 0.3328 s, speedup: 178.95

Nice!
But can we be even better?

Member of the Helmholtz Association 9 August 2018 Slide 61 83

Parallelization Workflow

Identify available parallelism

Parallelize loops with OpenACC

Optimize data locality

Optimize loop performance

Member of the Helmholtz Association 9 August 2018 Slide 62 83

Understanding Compiler Output

110, Accelerator kernel generated
Generating Tesla code
110, Generating reduction(max:error)
111, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
114, #pragma acc loop seq
114, Complex loop carried dependence of Anew-> prevents parallelization

110 #pragma acc parallel loop reduction(max:error)
111 for (int ix = ix_start; ix < ix_end; ix++)
112 {
113 // Inner loop
114 for (int iy = iy_start; iy < iy_end; iy++)
115 {
116 Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] - (A[iy*nx+ix+1] + A[iy*nx+ix-1] +

A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));↪→
117 error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
118 }
119 }

Member of the Helmholtz Association 9 August 2018 Slide 63 83

Understanding Compiler Output

110, Accelerator kernel generated
Generating Tesla code
110, Generating reduction(max:error)
111, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
114, #pragma acc loop seq
114, Complex loop carried dependence of Anew-> prevents parallelization

Outer loop: Parallelism with gang and vector
Inner loop: Sequentially per thread (#pragma acc loop seq)
Inner loop was never parallelized!
Rule of thumb: Expose as much parallelism as possible

Member of the Helmholtz Association 9 August 2018 Slide 63 83

OpenACC Parallelism
3 Levels of Parallelism

Gang

$

Workers

Vector

Vector
Vector threads work in lockstep
(SIMD/SIMT parallelism)

Worker
Has 1 or more vector; workers
share common resource (cache)

Gang
Has 1 or more workers; multiple gangs
work independently from each other

Member of the Helmholtz Association 9 August 2018 Slide 64 83

CUDA Parallelism
CUDA Execution Model

Software Hardware

Thread

Scalar
Processor

Threads executed by scalar processors (CUDA
cores)

Thread
Block Multiprocessor

Thread blocks: Executed onmultiprocessors (SM)
Do not migrate
Several concurrent thread blocks can reside on
multiprocessor
Limit: Multiprocessor resources (register file;
sharedmemory)

Grid

. . .

Device

Kernel launched as grid of thread blocks
Blocks, grids: Multiple dimensions

Member of the Helmholtz Association 9 August 2018 Slide 65 83

CUDA Parallelism
CUDA Execution Model

Software Hardware

Thread

Scalar
Processor

Threads executed by scalar processors (CUDA
cores)

Thread
Block Multiprocessor

Thread blocks: Executed onmultiprocessors (SM)
Do not migrate
Several concurrent thread blocks can reside on
multiprocessor
Limit: Multiprocessor resources (register file;
sharedmemory)

Grid

. . .

Device

Kernel launched as grid of thread blocks
Blocks, grids: Multiple dimensions

Member of the Helmholtz Association 9 August 2018 Slide 65 83

CUDA Parallelism
CUDA Execution Model

Software Hardware

Thread

Scalar
Processor

Threads executed by scalar processors (CUDA
cores)

Thread
Block Multiprocessor

Thread blocks: Executed onmultiprocessors (SM)
Do not migrate
Several concurrent thread blocks can reside on
multiprocessor
Limit: Multiprocessor resources (register file;
sharedmemory)

Grid

. . .

Device

Kernel launched as grid of thread blocks
Blocks, grids: Multiple dimensions

Member of the Helmholtz Association 9 August 2018 Slide 65 83

FromOpenACC to CUDA
map(||acc,||<<<>>>)

In general: Compiler free to do what it thinks is best
Usually
gang Mapped to blocks (coarse grain)

worker Mapped to threads (fine grain)
vector Mapped to threads (fine SIMD/SIMT)

seq No parallelism; sequential
Exact mapping compiler dependent
Performance tips

Use vector size divisible by 32
Block size: num_workers× vector_length

Member of the Helmholtz Association 9 August 2018 Slide 66 83

Declaration of Parallelism
Specify configuration of threads

Three clauses of parallel region (parallel, kernels) for changing
distribution/configuration of group of threads
Presence of keyword: Distribute using this level
Optional size: Control size of parallel entity

OpenACC: gang worker vector

#pragma acc parallel loop gang vector
Also: worker
Size: num_gangs(n), num_workers(n), vector_length(n)

Member of the Helmholtz Association 9 August 2018 Slide 67 83

Understanding Compiler Output II

110, Accelerator kernel generated
Generating Tesla code
110, Generating reduction(max:error)
111, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
114, #pragma acc loop seq
114, Complex loop carried dependence of Anew-> prevents parallelization

Compiler reports configuration of parallel entities
Gangmapped to blockIdx.x
Vectormapped to threadIdx.x
Worker not used

Here: 128 threads per block; as many blocks as needed
128 seems to be default for Tesla/NVIDIA

Member of the Helmholtz Association 9 August 2018 Slide 68 83

More Parallelism
Unsequentialize inner loop

Add vector clause to inner loop
Study result with profiler

Task 6: More Parallelism

Change to Task6/ directory
Work on TODOs
Compile: make
Submit to the batch system: make run
Generate profile with make profile_tofile

? What’s your speed-up?

TASK 6

Member of the Helmholtz Association 9 August 2018 Slide 69 83

More Parallelism
Compiler Output

$ make
pgcc -DUSE_DOUBLE -Minfo=accel -fast -acc -ta=tesla:cc70 poisson2d.c poisson2d_reference.o
-o poisson2d

poisson2d.c:
main:

104, Generating create(Anew[:ny*nx])
Generating copyin(rhs[:ny*nx])
Generating copy(A[:ny*nx])

110, Accelerator kernel generated
Generating Tesla code
110, Generating reduction(max:error)
111, #pragma acc loop gang /* blockIdx.x */
114, #pragma acc loop vector(128) /* threadIdx.x */
...

Member of the Helmholtz Association 9 August 2018 Slide 70 83

Data Region
Run Result

$ make run
srun --partition=gpus --gres=gpu:1 ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 60.8886 s, This: 0.7658 s, speedup: 79.51

Member of the Helmholtz Association 9 August 2018 Slide 71 83

Data Region
Run Result

$ make run
srun --partition=gpus --gres=gpu:1 ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 60.8886 s, This: 0.7658 s, speedup: 79.51

Actually slower!
Why?

Member of the Helmholtz Association 9 August 2018 Slide 71 83

Memory Coalescing
Memory in batch

Coalesced access good
Threads of warp (group of 32 contiguous threads) access adjacent words
Few transactions, high utilization

Uncoalesced access bad
Threads of warp access scattered words
Many transactions, low utilization

Best performance: threadIdx.x should access contiguously

0 1 … 31 0 1 … 31

Member of the Helmholtz Association 9 August 2018 Slide 72 83

Jacobi Access Pattern
A coalescion of data

Improve memory access pattern: Loop order in main loop
#pragma acc parallel loop reduction(max:error)
for (int ix = ix_start; ix < ix_end; ix++) {

#pragma acc loop vector
for (int iy = iy_start; iy < iy_end; iy++) {

Anew[iy*nx + ix] = -0.25 *
(rhs[iy*nx+ix] -↪→
(A[iy*nx+ix+1] + A[iy*nx+ix-1]

+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));
//...

ix Outer run index; accesses
consecutive memory locations

iy Inner run index; accesses offset
memory locations

→ Change order to optimize pattern!

Member of the Helmholtz Association 9 August 2018 Slide 73 83

Jacobi Access Pattern
A coalescion of data

Improve memory access pattern: Loop order in main loop
#pragma acc parallel loop reduction(max:error)
for (int iy = iy_start; iy < iy_end; iy++) {

#pragma acc loop vector
for (int ix = ix_start; ix < ix_end; ix++) {

Anew[iy*nx + ix] = -0.25 *
(rhs[iy*nx+ix] -↪→
(A[iy*nx+ix+1] + A[iy*nx+ix-1]

+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));
//...

ix Outer run index; accesses
consecutive memory locations

iy Inner run index; accesses offset
memory locations

→ Change order to optimize pattern!

Member of the Helmholtz Association 9 August 2018 Slide 73 83

Fixing Access Pattern
Loop change

Interchange loop order for Jacobi loops
Also: Compare to loop-fixed CPU reference version

Task 7: Loop Ordering

Change to Task7/ directory
Work on TODOs
Compile: make
Submit to the batch system: make run

? What’s your speed-up?

TASK 7

Member of the Helmholtz Association 9 August 2018 Slide 74 83

Fixing Access Pattern
Compiler output (unchanged)

$ make
pgcc -DUSE_DOUBLE -Minfo=accel -fast -acc -ta=tesla:cc70 poisson2d.c poisson2d_reference.o
-o poisson2d

poisson2d.c:
main:

104, Generating create(Anew[:ny*nx])
Generating copyin(rhs[:ny*nx])
Generating copy(A[:ny*nx])

110, Accelerator kernel generated
Generating Tesla code
110, Generating reduction(max:error)
111, #pragma acc loop gang /* blockIdx.x */
114, #pragma acc loop vector(128) /* threadIdx.x */
...

Member of the Helmholtz Association 9 August 2018 Slide 75 83

Fixing Access Pattern
Run Result

$ make run
srun --partition=gpus --gres=gpu:1 ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 113.0214 s, This: 0.3284 s, speedup: 344.15

Member of the Helmholtz Association 9 August 2018 Slide 76 83

Fixing Access Pattern
Run Result

$ make run
srun --partition=gpus --gres=gpu:1 ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 113.0214 s, This: 0.3284 s, speedup: 344.15

Fix also CPU
version!

Member of the Helmholtz Association 9 August 2018 Slide 76 83

Fixing Access Pattern
Run Result II

$ make run
srun --partition=gpus --gres=gpu:1 ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 6.2612 s, This: 0.2187 s, speedup: 28.63

Member of the Helmholtz Association 9 August 2018 Slide 77 83

Fixing Access Pattern
Run Result II

$ make run
srun --partition=gpus --gres=gpu:1 ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 6.2612 s, This: 0.2187 s, speedup: 28.63

26× is great!

Member of the Helmholtz Association 9 August 2018 Slide 77 83

Aside: Data Transfer with NVLink
One feature of Minsky not showcased in tutorial: NVLink
between CPU and GPU
Task 3 on P100 + PCI-E:

$ nvprof ./poisson2d
2048x2048: Ref: 73.1076 s, This: 0.4600 s, speedup: 158.93
Device "Tesla P100-PCIE-12GB (0)"

Count Avg Size Min Size Max Size Total Size Total Time Name
657 149.63KB 4.0000KB 0.9844MB 96.00000MB 9.050452ms Host To Device
193 169.78KB 4.0000KB 0.9961MB 32.00000MB 2.679974ms Device To Host

Task 3 on P100 + NVLink:

2048x2048: Ref: 49.7252 s, This: 0.5574 s, speedup: 89.21
Device "Tesla P100-SXM2-16GB (0)"

Count Avg Size Min Size Max Size Total Size Total Time Name
480 204.80KB 64.000KB 960.00KB 96.00000MB 3.325184ms Host To Device
160 204.80KB 64.000KB 960.00KB 32.00000MB 1.102954ms Device To Host

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host Device

PCI-E:< 16 GB/s

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host Device

NVLink: < 40 GB/s

Member of the Helmholtz Association 9 August 2018 Slide 78 83

Fixing Access Pattern
Run Result II

$ make run
srun --partition=gpus --gres=gpu:1 ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 6.8080 s, This: 0.2609 s, speedup: 26.10

Member of the Helmholtz Association 9 August 2018 Slide 79 83

Fixing Access Pattern
Run Result II

$ make run
srun --partition=gpus --gres=gpu:1 ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 6.8080 s, This: 0.2609 s, speedup: 26.10

26× is great!

Member of the Helmholtz Association 9 August 2018 Slide 79 83

Page-Locked Memory
Pageability

Host memory allocated with malloc() is pageable
Memory pages of memory can bemoved by kernel, e.g. swapped to disk
Additional indirection

NVIDIA GPUs can allocate page-lockedmemory (pinnedmemory)
+ Faster (safety guards are skipped)
+ Interleaving of execution and copy (asynchronous)
+ Directly map into GPUmemory∗
− Scarce resource; OS performance could degrade

OpenACC: Very easy to use pinnedmemory
-ta=tesla:pinned

Member of the Helmholtz Association 9 August 2018 Slide 80 83

Page-Locked Memory
Pageability

Host memory allocated with malloc() is pageable
Memory pages of memory can bemoved by kernel, e.g. swapped to disk
Additional indirection

NVIDIA GPUs can allocate page-lockedmemory (pinnedmemory)
+ Faster (safety guards are skipped)
+ Interleaving of execution and copy (asynchronous)
+ Directly map into GPUmemory∗
− Scarce resource; OS performance could degrade

OpenACC: Very easy to use pinnedmemory
-ta=tesla:pinned

Member of the Helmholtz Association 9 August 2018 Slide 80 83

Page-Locked Memory
Pageability

Host memory allocated with malloc() is pageable
Memory pages of memory can bemoved by kernel, e.g. swapped to disk
Additional indirection

NVIDIA GPUs can allocate page-lockedmemory (pinnedmemory)
+ Faster (safety guards are skipped)
+ Interleaving of execution and copy (asynchronous)
+ Directly map into GPUmemory∗
− Scarce resource; OS performance could degrade

OpenACC: Very easy to use pinnedmemory
-ta=tesla:pinned

Member of the Helmholtz Association 9 August 2018 Slide 80 83

Page-Locked Memory
Loop change

Compare performance with and without pinnedmemory
Also test unified memory again

Task 7’: Pinned Memory

Like in Task 7, but change compilation to include pinned or managed
Submit to the batch system: make run

TASK 7’

Member of the Helmholtz Association 9 August 2018 Slide 81 83

Parallelization Workflow

Identify available parallelism

Parallelize loops with OpenACC

Optimize data locality

Optimize loop performance

Member of the Helmholtz Association 9 August 2018 Slide 82 83

Parallelization Workflow

Identify available parallelism

Parallelize loops with OpenACC

Optimize data locality

Optimize loop performance

Member of the Helmholtz Association 9 August 2018 Slide 82 83

Conclusions & Summary

OpenACC can be used to efficiently exploit parallelism
… on the CPU, similar to OpenMP,
… on the GPU, for which it is specially designed for,
… onmultiple GPUs, working well together with MPI (not shown today).

It can work well with other GPU-leveraging tools
There are still many more tuning possibilities and keywords not mentioned (time…)

→ Great online resources to deepen your knowledge (see appendix)

Member of the Helmholtz Association 9 August 2018 Slide 83 83

Conclusions & Summary

OpenACC can be used to efficiently exploit parallelism
… on the CPU, similar to OpenMP,
… on the GPU, for which it is specially designed for,
… onmultiple GPUs, working well together with MPI (not shown today).

It can work well with other GPU-leveraging tools
There are still many more tuning possibilities and keywords not mentioned (time…)

→ Great online resources to deepen your knowledge (see appendix)Thank you

for your att
ention!

a.herten@fz-juelich.de

Member of the Helmholtz Association 9 August 2018 Slide 83 83

mailto:a.herten@fz-juelich.de

APPENDIX

Member of the Helmholtz Association 9 August 2018 Slide 1 12

Appendix
List of Tasks
Further Reading
Glossary
References

Member of the Helmholtz Association 9 August 2018 Slide 2 12

List of Tasks

Task 2: A First Parallel Loop
Task 3: More Parallel Loops on GPU
Task 4: Data Copies
Task 5: Data Region
Task 6: More Parallelism
Task 7: Loop Ordering
Task 7’: Pinned Memory

Member of the Helmholtz Association 9 August 2018 Slide 3 12

Further Reading

Member of the Helmholtz Association 9 August 2018 Slide 4 12

Further Resources on OpenACC

www.openacc.org: Official home page of OpenACC
developer.nvidia.com/openacc-courses: OpenACC courses, upcoming (live) and
past (recorded)
https://nvidia.qwiklab.com/quests/3: Qwiklabs for OpenACC; various levels
Book: Chandrasekaran and Juckeland OpenACC for Programmers: Concepts and
Strategies https://www.amazon.com/OpenACC-Programmers-Strategies-
Sunita-Chandrasekaran/dp/0134694287 [3]
Book: Farber Parallel Programming with OpenACC
https://www.amazon.com/Parallel-Programming-OpenACC-Rob-
Farber/dp/0124103979 [4]

Member of the Helmholtz Association 9 August 2018 Slide 5 12

www.openacc.org
developer.nvidia.com/openacc-courses
https://nvidia.qwiklab.com/quests/3
https://www.amazon.com/OpenACC-Programmers-Strategies-Sunita-Chandrasekaran/dp/0134694287
https://www.amazon.com/OpenACC-Programmers-Strategies-Sunita-Chandrasekaran/dp/0134694287
https://www.amazon.com/Parallel-Programming-OpenACC-Rob-Farber/dp/0124103979
https://www.amazon.com/Parallel-Programming-OpenACC-Rob-Farber/dp/0124103979

Glossary

Member of the Helmholtz Association 9 August 2018 Slide 6 12

Glossary I

CUDA Computing platform for GPUs from NVIDIA. Provides, among others, CUDA
C/C++. 18, 67, 68, 69, 70, 104

GCC The GNU Compiler Collection, the collection of open source compilers, among
others for C and Fortran. 17, 20

MPI The Message Passing Interface, a API definition for multi-node computing. 129,
130

NVIDIA US technology company creating GPUs. 11, 66, 67, 68, 69, 70, 71, 72, 79, 123, 124,
125, 137, 138, 139

NVLink NVIDIA’s communication protocol connecting CPU↔ GPU and GPU↔ GPUwith
high bandwidth. 120, 138

Member of the Helmholtz Association 9 August 2018 Slide 7 12

Glossary II
OpenACC Directive-based programming, primarily for many-core machines. 2, 3, 4, 10, 11,

12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 32, 39, 40, 42, 44, 46, 51, 57, 58, 59, 60, 61, 71,
72, 73, 74, 81, 88, 91, 97, 100, 104, 105, 123, 124, 125, 127, 128, 129, 130, 135

OpenMP Directive-based programming, primarily for multi-threadedmachines. 12, 13,
14, 46, 50, 53, 54, 55, 129, 130

P100 A large GPUwith the Pascal architecture from NVIDIA. It employs NVLink as its
interconnect and has fast HBM2memory. 120

PAPI The Performance API, a C/C++ API for querying performance counters. 33, 34
Pascal GPU architecture from NVIDIA (announced 2016). 67, 68, 69, 70, 138

perf Part of the Linux kernel which facilitates access to performance counters; comes
with command line utilities. 33, 34

Member of the Helmholtz Association 9 August 2018 Slide 8 12

Glossary III

PGI Compiler creators. Formerly The Portland Group, Inc.; since 2013 part of NVIDIA.
17, 20, 33, 34, 50

POWER CPU architecture from IBM, earlier: PowerPC. See also POWER8. 139
POWER8 Version 8 of IBM’s POWERprocessor, available also under the OpenPOWER

Foundation. 139

CPU Central Processing Unit. 2, 3, 4, 17, 46, 67, 68, 69, 70, 114, 117, 120, 129, 130, 137,
139

GPU Graphics Processing Unit. 2, 3, 4, 6, 7, 8, 9, 10, 17, 19, 57, 58, 59, 60, 61, 66, 67, 68,
69, 70, 71, 72, 89, 120, 123, 124, 125, 129, 130, 137, 138

Member of the Helmholtz Association 9 August 2018 Slide 9 12

References

Member of the Helmholtz Association 9 August 2018 Slide 10 12

References I

[2] Donald E. Knuth. “Structured Programming with Go to Statements”. In: ACM Comput.
Surv. 6.4 (Dec. 1974), pp. 261–301. ISSN: 0360-0300. DOI: 10.1145/356635.356640. URL:
http://doi.acm.org/10.1145/356635.356640 (pages 33, 34).

[3] Sunita Chandrasekaran and Guido Juckeland. OpenACC for Programmers: Concepts and
Strategies. Addison-Wesley Professional, 2017. ISBN: 0134694287. URL:
https://www.amazon.com/OpenACC-Programmers-Strategies-Sunita-
Chandrasekaran/dp/0134694287 (page 135).

[4] Rob Farber. Parallel Programming with OpenACC. Morgan Kaufmann, 2016. ISBN:
0124103979. URL: https://www.amazon.com/Parallel-Programming-OpenACC-
Rob-Farber/dp/0124103979 (page 135).

Member of the Helmholtz Association 9 August 2018 Slide 11 12

https://doi.org/10.1145/356635.356640
http://doi.acm.org/10.1145/356635.356640
https://www.amazon.com/OpenACC-Programmers-Strategies-Sunita-Chandrasekaran/dp/0134694287
https://www.amazon.com/OpenACC-Programmers-Strategies-Sunita-Chandrasekaran/dp/0134694287
https://www.amazon.com/Parallel-Programming-OpenACC-Rob-Farber/dp/0124103979
https://www.amazon.com/Parallel-Programming-OpenACC-Rob-Farber/dp/0124103979

References: Images, Graphics I

[1] SpaceX. SpaceX Launch. Freely available at Unsplash. URL:
https://unsplash.com/photos/uj3hvdfQujI.

Member of the Helmholtz Association 9 August 2018 Slide 12 12

https://unsplash.com/photos/uj3hvdfQujI

	Outline
	OpenACC Introduction
	About OpenACC
	Modus Operandi
	*openacc's Models
	Parallelization Workflow

	First Steps in OpenACC
	Example Program
	Identify Parallelism
	Parallelize Loops

	OpenACC on the GPU
	Compiling on the GPU
	Data Transfers
	Optimize Data Locality

	Appendix
	Appendix
	List of Tasks
	Further Reading
	Glossary

	Glossary
	Acronyms
	References

	References
	References

