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OpenACC Introduction
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About OpenACC
History
2011 OpenACC 1.0 specification is released

NVIDIA, Cray, PGI, CAPS
2013 OpenACC 2.0: More functionality, portability
2015 OpenACC 2.5: Enhancements, clarifications
2017 OpenACC 2.6: Deep copy, …

→ https://www.openacc.org/ (see also: Best practice guide )

Support
Compiler: PGI, GCC, Cray, Sunway
Languages: C/C++, Fortran
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Open{MP↔ACC}
Everything’s connected

OpenACCmodeled after OpenMP …
…but specific for accelerators
Might eventually be absorbed into OpenMP
But OpenMP>4.0 also has offloading feature

OpenACCmore descriptive, OpenMPmore prescriptive
Basic principle same: Fork/join model
Master thread launches parallel child threads; merge after execution

master masterfo
rk

parallel

jo
in

OpenMP

master masterfo
rk

parallel

jo
in

OpenACC
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Modus Operandi
Three-step program

1 Annotate code with directives, indicating parallelism
2 OpenACC-capable compiler generates accelerator-specific code
3 $uccess
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1 Directives
pragmatic

Compiler directives state intend to compiler
C/C++
#pragma acc kernels
for (int i = 0; i < 23; i++)
// ...

Fortran
!$acc kernels
do i = 1, 24
! ...
!$acc end kernels

Ignored by compiler which does not understand OpenACC
High level programmingmodel for many-core machines, especially accelerators
OpenACC: Compiler directives, library routines, environment variables
Portable across host systems and accelerator architectures
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2 Compiler
Simple and abstracted

Compiler support
PGI Best performance, great support, free
GCC Beta, limited coverage, OSS
Cray ???

Trust compiler to generate intended parallelism; always check status output!
No need to know ins’n’outs of accelerator; leave it to expert compiler engineers⋆

One code can target different accelerators: GPUs, or evenmulti-core CPUs→ Portability

⋆: Eventually you want to tune for device; but that’s possible
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3 $uccess
Iteration is key

Serial to parallel: fast
Serial to fast parallel: more time needed
Start simple→ refine

⇒ Productivity
Because of generalness: Sometimes not last bit of hardware performance accessible
But: Use OpenACC together with other accelerator-targeting techniques (CUDA, libraries,
…)

Expose
Parallelism

CompileMeasure
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OpenACC Accelerator Model
For computation andmemory spaces

Main program executes on host
Device code is transferred to accelerator
Execution on accelerator is started
Host waits until return (except: async)

Two separate memory spaces; data
transfers back and forth

Transfers hidden from programmer
Memories not coherent!
Compiler helps; GPU runtime helps

Start main
program

Wait for code

Run code

Finish code
Return to host

Transfer

W
ai
t

Host Memory Device
Memory

DMA Transfers
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OpenACC Programming Model
A binary perspective

OpenACC interpretation needs to be activated as compile flag
PGI pgcc -acc [-ta=tesla|-ta=multicore]
GCC gcc -fopenacc
→ Ignored by incapable compiler!

Additional flags possible to improve/modify compilation
-ta=tesla:cc60 Use compute capability 6.0

-ta=tesla:lineinfo Add source code correlation into binary
-ta=tesla:managed Use unified memory

-fopenacc-dim=geom Use geom configuration for threads
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A Glimpse of OpenACC

#pragma acc data copy(x[0:N],y[0:N])
#pragma acc parallel loop
{

for (int i=0; i<N; i++) {
x[i] = 1.0;
y[i] = 2.0;

}
for (int i=0; i<N; i++) {

y[i] = i*x[i]+y[i];
}

}
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Parallelization Workflow

Identify available parallelism

Parallelize loops with OpenACC

Optimize data locality

Optimize loop performance
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First Steps in OpenACC
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Jacobi Solver
Algorithmic description

Example for acceleration: Jacobi solver
Iterative solver, converges to correct value
Each iteration step: compute average of neighboring points
Example: 2D Poisson equation: ∇2A(x, y) = B(x, y)

Ai,j+1

Ai−1,j

Ai,j−1

Ai+1,j

Data Point
Boundary Point
Stencil

Ak+1(i, j) = −
1
4
(B(i, j)− (Ak(i− 1, j) + Ak(i, j+ 1),+Ak(i+ 1, j) + Ak(i, j− 1)))
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Jacobi Solver
Source code

while ( error > tol && iter < iter_max ) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

( A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
}}
for (int iy = iy_start; iy < iy_end; iy++) {

for( int ix = ix_start; ix < ix_end; ix++ ) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}
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Jacobi Solver
Source code

while ( error > tol && iter < iter_max ) {
error = 0.0;
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Jacobi Solver
Source code

while ( error > tol && iter < iter_max ) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
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}

Iterate until converged

Iterate across
matrix elements

Calculate new value
from neighbors

Accumulate error

Swap input/output

Member of the Helmholtz Association 9 August 2018 Slide 16 83



Jacobi Solver
Source code

while ( error > tol && iter < iter_max ) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

( A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
}}
for (int iy = iy_start; iy < iy_end; iy++) {

for( int ix = ix_start; ix < ix_end; ix++ ) {
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}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Iterate until converged

Iterate across
matrix elements

Calculate new value
from neighbors

Accumulate error

Swap input/output

Set boundary conditions
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Parallelization Workflow

Identify available parallelism

Parallelize loops with OpenACC

Optimize data locality

Optimize loop performance
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Profiling
Profile

[…] premature optimization is the root of all evil.

Yet we should not pass up our [optimization] opportunities […]

– Donald Knuth [2]

Investigate hot spots of your program!
→ Profile!

Many tools, many levels: perf, PAPI, Score-P, Intel Advisor, NVIDIA Visual Profiler, …
Here: Examples from PGI
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Profile of Application
Info during compilation

$ pgcc -DUSE_DOUBLE -Minfo=all,intensity -fast -Minfo=ccff -Mprof=ccff
poisson2d_reference.o poisson2d.c -o poisson2d
poisson2d.c:
main:

68, Generated vector simd code for the loop
FMA (fused multiply-add) instruction(s) generated

98, FMA (fused multiply-add) instruction(s) generated
105, Loop not vectorized: data dependency
123, Loop not fused: different loop trip count

Loop not vectorized: data dependency
Loop unrolled 8 times

Automated optimization of compiler, due to -fast
Vectorization, FMA, unrolling
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Profile of Application
Info during run

$ pgprof --cpu-profiling on [...] ./poisson2d
======== CPU profiling result (flat):
Time(%) Time Name
77.52% 999.99ms main (poisson2d.c:148 0x6d8)
9.30% 120ms main (0x704)
7.75% 99.999ms main (0x718)
0.78% 9.9999ms main (poisson2d.c:128 0x348)
0.78% 9.9999ms main (poisson2d.c:123 0x398)
0.78% 9.9999ms __xlmass_expd2 (0xffcc011c)
0.78% 9.9999ms __c_mcopy8 (0xffcc0054)
0.78% 9.9999ms __xlmass_expd2 (0xffcc0034)

======== Data collected at 100Hz frequency

78% in main()
Since everything is in main – limited helpfulness
Let’s look into main!
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Code Independency Analysis
Independence is key

while ( error > tol && iter < iter_max ) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

( A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
}}
for (int iy = iy_start; iy < iy_end; iy++) {

for( int ix = ix_start; ix < ix_end; ix++ ) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Data dependency
between iterations

Independent loop
iterations

Independent loop
iterations

Independent loop
iterations
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Parallelization Workflow

Identify available parallelism

Parallelize loops with OpenACC

Optimize data locality

Optimize loop performance
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Parallel Loops: Parallel
Maybe the secondmost important directive

Programmer identifies block containing parallelism
→ compiler generates parallel code (kernel)
Program launch creates gangs of parallel threads on parallel device
Implicit barrier at end of parallel region
Each gang executes same code sequentially

OpenACC: parallel

#pragma acc parallel [clause, [, clause] ...] newline
{structured block}
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Parallel Loops: Parallel
Clauses

Diverse clauses to augment the parallel region

private(var) A copy of variables var is made for each gang
firstprivate(var) Same as private, except varwill initialized with value from host

if(cond) Parallel region will execute on accelerator only if cond is true
reduction(op:var) Reduction is performed on variable varwith operation op; supported:

+ * max min …
async[(int)] No implicit barrier at end of parallel region
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Parallel Loops: Loops
Maybe the third most important directive

Programmer identifies loop eligible for parallelization
Directive must be directly before loop
Optional: Describe type of parallelism

OpenACC: loop

#pragma acc loop [clause, [, clause] ...] newline
{structured block}

Member of the Helmholtz Association 9 August 2018 Slide 25 83



Parallel Loops: Loops
Clauses

independent Iterations of loop are data-independent (implied if in parallel region
(and no seq or auto))

collapse(int) Collapse int tightly-nested loops
seq This loop is to be executed sequentially (not parallel)

tile(int[,int]) Split loops into loops over tiles of the full size
auto Compiler decides what to do
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Parallel Loops: Parallel Loops
Maybe themost important directive

Combined directive: shortcut
Because its used so often
Any clause that is allowed on parallel or loop allowed
Restriction: May not appear in body of another parallel region

OpenACC: parallel loop

#pragma acc parallel loop [clause, [, clause] ...]
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Parallel Loops Example

double sum = 0.0;
#pragma acc parallel loop
for (int i=0; i<N; i++) {

x[i] = 1.0;
y[i] = 2.0;

}
#pragma acc parallel loop reduction(+:sum)
{
for (int i=0; i<N; i++) {

y[i] = i*x[i]+y[i];
sum+=y[i];

}
}

Kernel 1

Kernel 2
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Parallel Jacobi
Add parallelism

Add OpenACC parallelism tomain loop in Jacobi solver source code (CPU parallelism)
→ Congratulations, you are a parallel developer!

Task 2: A First Parallel Loop

Change to Task2/ directory
Compile: make; see README.md
Submit run to the batch system: make run
Adapt the bsub call and run with other number of iterations, matrix sizes
Change number of CPU threads via $ACC_NUM_CORES or $OMP_NUM_THREADS

? What’s your speed-up? What’s the best configuration for cores?
E Compare it to OpenMP

TASK 2
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Parallel Jacobi
Source Code

110 #pragma acc parallel loop reduction(max:error)
111 for (int ix = ix_start; ix < ix_end; ix++)
112 {
113 for (int iy = iy_start; iy < iy_end; iy++)
114 {
115 Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] - ( A[iy*nx+ix+1] + A[iy*nx+ix-1]
116 + A[(iy-1)*nx+ix] +

A[(iy+1)*nx+ix] ));↪→

117 error = fmaxr( error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
118 }
119 }
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Parallel Jacobi
Compilation result

$ make
pgcc -DUSE_DOUBLE -Minfo=accel -fast -acc -ta=multicore poisson2d.c poisson2d_reference.o
-o poisson2d

poisson2d.c:
main:

110, Generating Multicore code
111, #pragma acc loop gang

110, Generating reduction(max:error)
113, Accelerator restriction: size of the GPU copy of A,rhs,Anew is unknown

Complex loop carried dependence of Anew-> prevents parallelization
Loop carried dependence of Anew-> prevents parallelization
Loop carried backward dependence of Anew-> prevents vectorization
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Parallel Jacobi
Run result

$ make run
srun --partition=gpus --gres=gpu:1 ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 60.5136 s, This: 8.2483 s, speedup: 7.34
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Parallel Jacobi: OpenMP E

OpenMP pragma is quite similar
#pragma acc parallel loop reduction(max:error)
#pragma omp parallel for reduction(max:error)
for (int ix = ix_start; ix < ix_end; ix++) { ... }

PGI’s compiler output is a bit different (but states the same)

$ pgcc -DUSE_DOUBLE -Minfo=mp -fast -mp poisson2d.c poisson2d_reference.o -o poisson2d
poisson2d.c:
main:

112, Parallel region activated
Parallel loop activated with static block schedule

123, Parallel region terminated
Begin critical section
End critical section
Barrier

Run time should be very similar!
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More Parallelism: Kernels
More freedom for compiler

Kernels directive: second way to expose parallelism
Regionmay contain parallelism
Compiler determines parallelization opportunities

→ More freedom for compiler
Rest: Same as for parallel

OpenACC: kernels

#pragma acc kernels [clause, [, clause] ...]
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Kernels Example

double sum = 0.0;
#pragma acc kernels
{
for (int i=0; i<N; i++) {

x[i] = 1.0;
y[i] = 2.0;

}
for (int i=0; i<N; i++) {

y[i] = i*x[i]+y[i];
sum+=y[i];

}
}

Kernels created here
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kernels vs. parallel
Both approaches equally valid; can perform equally well

kernels
Compiler performs parallel analysis
Can cover large area of code with single directive
Gives compiler additional leeway

parallel
Requires parallel analysis by programmer
Will also parallelize what compiler maymiss
More explicit
Similar to OpenMP

Both regions may not contain other kernels/parallel regions
No braunching into or out
Programmust not depend on order of evaluation of clauses
At most: One if clause
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OpenACC on the GPU
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Changes for GPU-OpenACC
Immensely complicated changes

Necessary for previous code to run on GPU: -ta=tesla instead of -ta=multicore

⇒ That’s it!

But we can optimize!
First: A task
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Parallel Jacobi on GPU
More parallelism, more corrres

Add OpenACC parallelism to other loops of while (L:123 – L:141)
Use either kernels or parallel
Make sure to use -ta=teslawhen compiling.

Task 3: More Parallel Loops on GPU

Change to Task3/ directory
Compile: make
Submit parallel run to the batch system: make run

? What’s your speed-up?

TASK 3
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Parallel Jacobi II
Compilation result

$ make
pgcc -DUSE_DOUBLE -Minfo=accel -fast -acc -ta=tesla:cc70,managed poisson2d.c poisson2d_reference.o -o poisson2d
poisson2d.c:
main:

109, Accelerator kernel generated
Generating Tesla code

109, Generating reduction(max:error)
110, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
112, #pragma acc loop seq

109, ...
121, Accelerator kernel generated

Generating Tesla code
124, #pragma acc loop gang /* blockIdx.x */
126, #pragma acc loop vector(128) /* threadIdx.x */

121, Generating implicit copyin(Anew[:])
Generating implicit copyout(A[:])

126, Loop is parallelizable
133, Accelerator kernel genera...
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Parallel Jacobi II
Run result

$ make run
srun --partition=gpus --gres=gpu:1 ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 40.3299 s, This: 0.3243 s, speedup: 124.36

Member of the Helmholtz Association 9 August 2018 Slide 41 83



Parallel Jacobi II
Run result

$ make run
srun --partition=gpus --gres=gpu:1 ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 40.3299 s, This: 0.3243 s, speedup: 124.36

Done?!
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Parallel Jacobi
while ( error > tol && iter < iter_max ) {

error = 0.0;
#pragma acc parallel loop reduction(max:error)
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

( A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
}}
#pragma acc parallel loop
for (int iy = iy_start; iy < iy_end; iy++) {

for( int ix = ix_start; ix < ix_end; ix++ ) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
#pragma acc parallel loop
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}
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Automatic Data Transfers

Up to now: We did not care about data transfers
Compiler and runtime care
Magic keyword: -ta=tesla:managed
Only feature of (recent) NVIDIA GPUs!
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NVIDIA GPUMemory Spaces
Location, location, location

CPUMemory

CPU

DRAM

Scheduler

. . .

Interconnect

L2

At the Beginning CPU and GPU memory very distinct, own addresses

CUDA 4.0 Unified Virtual Addressing: pointer from same address pool,
but data copy manual

CUDA 6.0 Unified Memory*: Data copy by driver, but whole data at
once (Kepler)

CUDA 8.0 Unified Memory (truly): Data copy by driver, page faults
on-demand initiate data migrations (Pascal)
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Portability
Managedmemory: Only NVIDIA GPU feature
Great OpenACC features: Portability

→ Code should also be fast without -ta=tesla:managed!
Let’s remove it from compile flags!

$ make
pgcc -c -DUSE_DOUBLE -Minfo=accel -fast -acc -ta=tesla:cc60
poisson2d_reference.c -o poisson2d_reference.o
poisson2d.c:
PGC-S-0155-Compiler failed to translate accelerator region
(see -Minfo messages): Could not find allocated-variable index for
symbol (poisson2d.c: 110)
...
PGC/power Linux 17.4-0: compilation completed with severe errors
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Copy Statements
Compiler implicitly created copy clauses to copy data to device

134, Generating implicit copyin(A[:])
Generating implicit copyout(A[nx*(ny-1)+1:nx-2])

It couldn’t determine length of copied data…
…but before: no problem – Unified Memory!

Now: Problem! We need to give that information! (see also later)

OpenACC: copy

#pragma acc parallel copy(A[start:end])
Also: copyin(B[s:e]) copyout(C[s:e]) present(D[s:e]) create(E[s:e])
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Data Copies
Get that data!

Add copy clause to parallel regions
Check correctness with Visual Profiler

Task 4: Data Copies

Change to Task4/ directory
Work on TODOs
Compile: make
Submit parallel run to the batch system: make run

? What’s your speed-up?

TASK 4
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Data Copies
Compiler Output

$ make
pgcc -DUSE_DOUBLE -Minfo=accel -fast -acc -ta=tesla:cc70 poisson2d.c poisson2d_reference.o -o poisson2d
poisson2d.c:
main:

109, Generating copy(A[:ny*nx],Anew[:ny*nx],rhs[:ny*nx])
...

121, Generating copy(Anew[:ny*nx],A[:ny*nx])
...

131, Generating copy(A[:ny*nx])
Accelerator kernel generated
Generating Tesla code

132, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
137, Generating copy(A[:ny*nx])

Accelerator kernel generated
Generating Tesla code

138, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
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Data Copies
Run Result

$ make run
srun --partition=gpus --gres=gpu:1 ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 60.0229 s, This: 69.5278 s, speedup: 0.86
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Data Copies
Run Result

$ make run
srun --partition=gpus --gres=gpu:1 ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 60.0229 s, This: 69.5278 s, speedup: 0.86

Slower?!
Why?
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PGI/NVIDIA Visual Profiler
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Jacboi in Visual Profiler
Zoom in to kernel calls
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Parallelization Workflow

Identify available parallelism

Parallelize loops with OpenACC

Optimize data locality

Optimize loop performance
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Analyze Jacobi Data Flow
In code

while (error > tol && iter < iter_max) {
error = 0.0;

A, Anew resident on host

iter++
}

#pragma acc parallel loop

for (int ix = ix_start; ix < ix_end; ix++)
{↪→
for (int iy = iy_start; iy < iy_end;

iy++) {↪→
// ...

}}
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Analyze Jacobi Data Flow
In code

while (error > tol && iter < iter_max) {
error = 0.0;

A, Anew resident on host

A, Anew resident on host

iter++
}

#pragma acc parallel loop

A, Anew resident on device
for (int ix = ix_start; ix < ix_end; ix++)

{↪→
for (int iy = iy_start; iy < iy_end;

iy++) {↪→
// ...

}}

A, Anew resident on device

copy

Copies are done
in each iteration!
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Data Regions
Tomanually specify data locations: data construct

Defines region of code in which data remains on device
Data is shared among all kernels in region
Explicit data transfers

OpenACC: data

#pragma acc data [clause, [, clause] ...]
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Data Regions
Clauses

Clauses to augment the data regions

copy(var) Allocates memory of var on GPU, copies data to GPU at beginning of region,
copies data to host at end of region
Specifies size of var: var[lowerBound:size]

copyin(var) Allocates memory of var on GPU, copies data to GPU at beginning of region
copyout(var) Allocates memory of var on GPU, copies data to host at end of region
create(var) Allocates memory of var on GPU

present(var) Data of var is not copies automatically to GPU but considered present
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Data Region Example

#pragma acc data copyout(y[0:N]) create(x[0:N])
{
double sum = 0.0;
#pragma acc parallel loop
for (int i=0; i<N; i++) {

x[i] = 1.0;
y[i] = 2.0;

}
#pragma acc parallel loop
for (int i=0; i<N; i++) {

y[i] = i*x[i]+y[i];
}
}
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Data Regions II
Looser regions: enter data directive

Define data regions, but not for structured block
Closest to cudaMemcpy()
Still, explicit data transfers

OpenACC: enter data

#pragma acc enter data [clause, [, clause] ...]
#pragma acc exit data [clause, [, clause] ...]
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Data Region
More parallelism, Data locality

Add data regions such that all data resides on device during iterations
Optional: See your success in Visual Profiler

Task 5: Data Region

Change to Task5/ directory
Work on TODOs
Compile: make
Submit parallel run to the batch system: make run

? What’s your speed-up?
Generate profile with make profile_tofile

TASK 5
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Parallel Jacobi II
Source Code

105 #pragma acc data copy(A[0:nx*ny]) copyin(rhs[0:nx*ny]) create(Anew[0:nx*ny])
106 while ( error > tol && iter < iter_max )
107 {
108 error = 0.0;
109
110 // Jacobi kernel
111 #pragma acc parallel loop reduction(max:error)
112 for (int ix = ix_start; ix < ix_end; ix++)
113 {
114 for (int iy = iy_start; iy < iy_end; iy++)
115 {
116 Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] - ( A[iy*nx+ix+1] + A[iy*nx+ix-1]
117 + A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix] ));
118 error = fmaxr( error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
119 }
120 }
121
122 // A <-> Anew
123 #pragma acc parallel loop
124 for (int iy = iy_start; iy < iy_end; iy++)
125 // …
126 }
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Parallel Jacobi II
Compilation result

$ make
pgcc -DUSE_DOUBLE -Minfo=accel -fast -acc -ta=tesla:cc70 poisson2d.c poisson2d_reference.o
-o poisson2d

poisson2d.c:
poisson2d.c:
main:

105, Generating copyin(rhs[:ny*nx])
Generating create(Anew[:ny*nx])
Generating copy(A[:ny*nx])

111, Accelerator kernel generated
Generating Tesla code
111, Generating reduction(max:error)
112, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
114, #pragma acc loop seq

114, Complex loop carried dependence of Anew-> prevents parallelization
Loop carried dependence of Anew-> prevents parallelization
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Parallel Jacobi II
Run result

$ make run
srun --partition=gpus --gres=gpu:1 ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 59.5508 s, This: 0.3328 s, speedup: 178.95
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Parallel Jacobi II
Run result

$ make run
srun --partition=gpus --gres=gpu:1 ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 59.5508 s, This: 0.3328 s, speedup: 178.95

Nice!
But can we be even better?
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Parallelization Workflow

Identify available parallelism

Parallelize loops with OpenACC

Optimize data locality

Optimize loop performance
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Understanding Compiler Output

110, Accelerator kernel generated
Generating Tesla code
110, Generating reduction(max:error)
111, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
114, #pragma acc loop seq
114, Complex loop carried dependence of Anew-> prevents parallelization

110 #pragma acc parallel loop reduction(max:error)
111 for (int ix = ix_start; ix < ix_end; ix++)
112 {
113 // Inner loop
114 for (int iy = iy_start; iy < iy_end; iy++)
115 {
116 Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] - ( A[iy*nx+ix+1] + A[iy*nx+ix-1] +

A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix] ));↪→
117 error = fmaxr( error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
118 }
119 }
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Understanding Compiler Output

110, Accelerator kernel generated
Generating Tesla code
110, Generating reduction(max:error)
111, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
114, #pragma acc loop seq
114, Complex loop carried dependence of Anew-> prevents parallelization

Outer loop: Parallelism with gang and vector
Inner loop: Sequentially per thread (#pragma acc loop seq)
Inner loop was never parallelized!
Rule of thumb: Expose as much parallelism as possible
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OpenACC Parallelism
3 Levels of Parallelism

Gang

$

Workers

Vector

Vector
Vector threads work in lockstep
(SIMD/SIMT parallelism)

Worker
Has 1 or more vector; workers
share common resource (cache)

Gang
Has 1 or more workers; multiple gangs
work independently from each other
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CUDA Parallelism
CUDA Execution Model

Software Hardware

Thread

Scalar
Processor

Threads executed by scalar processors (CUDA
cores)

Thread
Block Multiprocessor

Thread blocks: Executed onmultiprocessors (SM)
Do not migrate
Several concurrent thread blocks can reside on
multiprocessor
Limit: Multiprocessor resources (register file;
sharedmemory)

Grid

. . .

Device

Kernel launched as grid of thread blocks
Blocks, grids: Multiple dimensions
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FromOpenACC to CUDA
map(||acc,||<<<>>>)

In general: Compiler free to do what it thinks is best
Usually
gang Mapped to blocks (coarse grain)

worker Mapped to threads (fine grain)
vector Mapped to threads (fine SIMD/SIMT)

seq No parallelism; sequential
Exact mapping compiler dependent
Performance tips

Use vector size divisible by 32
Block size: num_workers× vector_length
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Declaration of Parallelism
Specify configuration of threads

Three clauses of parallel region (parallel, kernels) for changing
distribution/configuration of group of threads
Presence of keyword: Distribute using this level
Optional size: Control size of parallel entity

OpenACC: gang worker vector

#pragma acc parallel loop gang vector
Also: worker
Size: num_gangs(n), num_workers(n), vector_length(n)
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Understanding Compiler Output II

110, Accelerator kernel generated
Generating Tesla code
110, Generating reduction(max:error)
111, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
114, #pragma acc loop seq
114, Complex loop carried dependence of Anew-> prevents parallelization

Compiler reports configuration of parallel entities
Gangmapped to blockIdx.x
Vectormapped to threadIdx.x
Worker not used

Here: 128 threads per block; as many blocks as needed
128 seems to be default for Tesla/NVIDIA
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More Parallelism
Unsequentialize inner loop

Add vector clause to inner loop
Study result with profiler

Task 6: More Parallelism

Change to Task6/ directory
Work on TODOs
Compile: make
Submit to the batch system: make run
Generate profile with make profile_tofile

? What’s your speed-up?

TASK 6
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More Parallelism
Compiler Output

$ make
pgcc -DUSE_DOUBLE -Minfo=accel -fast -acc -ta=tesla:cc70 poisson2d.c poisson2d_reference.o
-o poisson2d

poisson2d.c:
main:

104, Generating create(Anew[:ny*nx])
Generating copyin(rhs[:ny*nx])
Generating copy(A[:ny*nx])

110, Accelerator kernel generated
Generating Tesla code
110, Generating reduction(max:error)
111, #pragma acc loop gang /* blockIdx.x */
114, #pragma acc loop vector(128) /* threadIdx.x */
...
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Data Region
Run Result

$ make run
srun --partition=gpus --gres=gpu:1 ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 60.8886 s, This: 0.7658 s, speedup: 79.51
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Data Region
Run Result

$ make run
srun --partition=gpus --gres=gpu:1 ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 60.8886 s, This: 0.7658 s, speedup: 79.51

Actually slower!
Why?
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Memory Coalescing
Memory in batch

Coalesced access good
Threads of warp (group of 32 contiguous threads) access adjacent words
Few transactions, high utilization

Uncoalesced access bad
Threads of warp access scattered words
Many transactions, low utilization

Best performance: threadIdx.x should access contiguously

0 1 … 31 0 1 … 31
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Jacobi Access Pattern
A coalescion of data

Improve memory access pattern: Loop order in main loop
#pragma acc parallel loop reduction(max:error)
for (int ix = ix_start; ix < ix_end; ix++) {

#pragma acc loop vector
for (int iy = iy_start; iy < iy_end; iy++) {

Anew[ iy*nx + ix ] = -0.25 *
(rhs[iy*nx+ix] -↪→
( A[iy*nx+ix+1] + A[iy*nx+ix-1]

+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));
//...

ix Outer run index; accesses
consecutive memory locations

iy Inner run index; accesses offset
memory locations

→ Change order to optimize pattern!
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Fixing Access Pattern
Loop change

Interchange loop order for Jacobi loops
Also: Compare to loop-fixed CPU reference version

Task 7: Loop Ordering

Change to Task7/ directory
Work on TODOs
Compile: make
Submit to the batch system: make run

? What’s your speed-up?

TASK 7
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Fixing Access Pattern
Compiler output (unchanged)

$ make
pgcc -DUSE_DOUBLE -Minfo=accel -fast -acc -ta=tesla:cc70 poisson2d.c poisson2d_reference.o
-o poisson2d

poisson2d.c:
main:

104, Generating create(Anew[:ny*nx])
Generating copyin(rhs[:ny*nx])
Generating copy(A[:ny*nx])

110, Accelerator kernel generated
Generating Tesla code
110, Generating reduction(max:error)
111, #pragma acc loop gang /* blockIdx.x */
114, #pragma acc loop vector(128) /* threadIdx.x */
...
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Fixing Access Pattern
Run Result

$ make run
srun --partition=gpus --gres=gpu:1 ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 113.0214 s, This: 0.3284 s, speedup: 344.15
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Fixing Access Pattern
Run Result

$ make run
srun --partition=gpus --gres=gpu:1 ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 113.0214 s, This: 0.3284 s, speedup: 344.15

Fix also CPU
version!
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Fixing Access Pattern
Run Result II

$ make run
srun --partition=gpus --gres=gpu:1 ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 6.2612 s, This: 0.2187 s, speedup: 28.63
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Fixing Access Pattern
Run Result II

$ make run
srun --partition=gpus --gres=gpu:1 ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 6.2612 s, This: 0.2187 s, speedup: 28.63

26× is great!
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Aside: Data Transfer with NVLink
One feature of Minsky not showcased in tutorial: NVLink
between CPU and GPU
Task 3 on P100 + PCI-E:

$ nvprof ./poisson2d
2048x2048: Ref: 73.1076 s, This: 0.4600 s, speedup: 158.93
Device "Tesla P100-PCIE-12GB (0)"

Count Avg Size Min Size Max Size Total Size Total Time Name
657 149.63KB 4.0000KB 0.9844MB 96.00000MB 9.050452ms Host To Device
193 169.78KB 4.0000KB 0.9961MB 32.00000MB 2.679974ms Device To Host

Task 3 on P100 + NVLink:

2048x2048: Ref: 49.7252 s, This: 0.5574 s, speedup: 89.21
Device "Tesla P100-SXM2-16GB (0)"

Count Avg Size Min Size Max Size Total Size Total Time Name
480 204.80KB 64.000KB 960.00KB 96.00000MB 3.325184ms Host To Device
160 204.80KB 64.000KB 960.00KB 32.00000MB 1.102954ms Device To Host

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host Device

PCI-E:< 16 GB/s

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host Device

NVLink: < 40 GB/s
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Fixing Access Pattern
Run Result II

$ make run
srun --partition=gpus --gres=gpu:1 ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 6.8080 s, This: 0.2609 s, speedup: 26.10
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Fixing Access Pattern
Run Result II

$ make run
srun --partition=gpus --gres=gpu:1 ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 6.8080 s, This: 0.2609 s, speedup: 26.10

26× is great!
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Page-Locked Memory
Pageability

Host memory allocated with malloc() is pageable
Memory pages of memory can bemoved by kernel, e.g. swapped to disk
Additional indirection

NVIDIA GPUs can allocate page-lockedmemory (pinnedmemory)
+ Faster (safety guards are skipped)
+ Interleaving of execution and copy (asynchronous)
+ Directly map into GPUmemory∗
− Scarce resource; OS performance could degrade

OpenACC: Very easy to use pinnedmemory
-ta=tesla:pinned
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Page-Locked Memory
Loop change

Compare performance with and without pinnedmemory
Also test unified memory again

Task 7’: Pinned Memory

Like in Task 7, but change compilation to include pinned or managed
Submit to the batch system: make run

TASK 7’
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Parallelization Workflow

Identify available parallelism

Parallelize loops with OpenACC

Optimize data locality

Optimize loop performance
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Parallelization Workflow

Identify available parallelism

Parallelize loops with OpenACC

Optimize data locality

Optimize loop performance
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Conclusions & Summary

OpenACC can be used to efficiently exploit parallelism
… on the CPU, similar to OpenMP,
… on the GPU, for which it is specially designed for,
… onmultiple GPUs, working well together with MPI (not shown today).

It can work well with other GPU-leveraging tools
There are still many more tuning possibilities and keywords not mentioned (time…)

→ Great online resources to deepen your knowledge (see appendix)
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Conclusions & Summary

OpenACC can be used to efficiently exploit parallelism
… on the CPU, similar to OpenMP,
… on the GPU, for which it is specially designed for,
… onmultiple GPUs, working well together with MPI (not shown today).

It can work well with other GPU-leveraging tools
There are still many more tuning possibilities and keywords not mentioned (time…)

→ Great online resources to deepen your knowledge (see appendix)Thank you

for your att
ention!

a.herten@fz-juelich.de
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Appendix
List of Tasks
Further Reading
Glossary
References
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List of Tasks

Task 2: A First Parallel Loop
Task 3: More Parallel Loops on GPU
Task 4: Data Copies
Task 5: Data Region
Task 6: More Parallelism
Task 7: Loop Ordering
Task 7’: Pinned Memory
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Further Reading
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Further Resources on OpenACC

www.openacc.org: Official home page of OpenACC
developer.nvidia.com/openacc-courses: OpenACC courses, upcoming (live) and
past (recorded)
https://nvidia.qwiklab.com/quests/3: Qwiklabs for OpenACC; various levels
Book: Chandrasekaran and Juckeland OpenACC for Programmers: Concepts and
Strategies https://www.amazon.com/OpenACC-Programmers-Strategies-
Sunita-Chandrasekaran/dp/0134694287 [3]
Book: Farber Parallel Programming with OpenACC
https://www.amazon.com/Parallel-Programming-OpenACC-Rob-
Farber/dp/0124103979 [4]
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Glossary
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Glossary I

CUDA Computing platform for GPUs from NVIDIA. Provides, among others, CUDA
C/C++. 18, 67, 68, 69, 70, 104

GCC The GNU Compiler Collection, the collection of open source compilers, among
others for C and Fortran. 17, 20

MPI The Message Passing Interface, a API definition for multi-node computing. 129,
130

NVIDIA US technology company creating GPUs. 11, 66, 67, 68, 69, 70, 71, 72, 79, 123, 124,
125, 137, 138, 139

NVLink NVIDIA’s communication protocol connecting CPU↔ GPU and GPU↔ GPUwith
high bandwidth. 120, 138
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Glossary II
OpenACC Directive-based programming, primarily for many-core machines. 2, 3, 4, 10, 11,

12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 32, 39, 40, 42, 44, 46, 51, 57, 58, 59, 60, 61, 71,
72, 73, 74, 81, 88, 91, 97, 100, 104, 105, 123, 124, 125, 127, 128, 129, 130, 135

OpenMP Directive-based programming, primarily for multi-threadedmachines. 12, 13,
14, 46, 50, 53, 54, 55, 129, 130

P100 A large GPUwith the Pascal architecture from NVIDIA. It employs NVLink as its
interconnect and has fast HBM2memory. 120

PAPI The Performance API, a C/C++ API for querying performance counters. 33, 34
Pascal GPU architecture from NVIDIA (announced 2016). 67, 68, 69, 70, 138

perf Part of the Linux kernel which facilitates access to performance counters; comes
with command line utilities. 33, 34
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Glossary III

PGI Compiler creators. Formerly The Portland Group, Inc.; since 2013 part of NVIDIA.
17, 20, 33, 34, 50

POWER CPU architecture from IBM, earlier: PowerPC. See also POWER8. 139
POWER8 Version 8 of IBM’s POWERprocessor, available also under the OpenPOWER

Foundation. 139

CPU Central Processing Unit. 2, 3, 4, 17, 46, 67, 68, 69, 70, 114, 117, 120, 129, 130, 137,
139

GPU Graphics Processing Unit. 2, 3, 4, 6, 7, 8, 9, 10, 17, 19, 57, 58, 59, 60, 61, 66, 67, 68,
69, 70, 71, 72, 89, 120, 123, 124, 125, 129, 130, 137, 138
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