
GPU ACCELERATORS AT JSC
OF THREADS AND KERNELS
28 May 2018 Andreas Herten Forschungszentrum Jülich

Member of the Helmholtz Association

Outline

GPUs at JSC
GPU Architecture

Empirical Motivation
Comparisons
3 Core Features

Memory
Asynchronicity
SIMT

High Throughput
Summary

Programming GPUs
Libraries
OpenACC/ OpenMP
CUDA C/C++
Performance Analysis
Advanced Topics

Using GPUs on JURECA
Compiling
Resource Allocation

Member of the Helmholtz Association 28 May 2018 Slide 1 41

JURECA – Jülich’s Multi-Purpose Supercomputer
1872 nodes with Intel Xeon E5 2680 v3 Haswell CPUs (2× 12 cores)
75 nodes with 2 NVIDIA Tesla K80 cards (look like 4 GPUs); each 2× 12GB RAM
JURECA Booster: 1640 nodes with Intel Xeon Phi Knights Landing
1.8 (CPU) + 0.44 (GPU) + 5 (KNL) PFLOP/s peak performance (#29)

Member of the Helmholtz Association 28 May 2018 Slide 2 41

JURONJULIA

JURON – A Human Brain Project Prototype
18 nodes with IBM POWER8NVL CPUs (2× 10 cores)
Per Node: 4 NVIDIA Tesla P100 cards (16 GB HBM2 memory), connected via NVLink
GPU: 0.38 PFLOP/s peak performance

Member of the Helmholtz Association 28 May 2018 Slide 3 41

JUWELS – Jülich’s New Large System currently under construction
2500 nodes with Intel Xeon CPUs (2× 24 cores)
48 nodes with 4 NVIDIA Tesla V100 cards (16 GB HBM2 memory)
10.4 (CPU) + 1.6 (GPU) + PFLOP/s peak performance

Member of the Helmholtz Association 28 May 2018 Slide 4 41

GPU Architecture

Member of the Helmholtz Association 28 May 2018 Slide 5 41

Why?

Status Quo Across Architectures
Performance

10
2

10
3

10
4

 2008 2010 2012 2014 2016

HD 3
870

HD 4
870

HD 5
870

HD 6
970

HD 6
970

HD 7
970 G

Hz
Ed.

HD 8
970

Fire
Pro

 W
9100

Fire
Pro

 S
9150

X5482

X5492

W
5590

X5680

X5690

E5-2
690

E5-2
697 v

2

E5-2
699 v

3

E5-2
699 v

3

E5-2
699 v

4

Tesla
 C

1060

Tesla
 C

1060 Tesla
 C

2050 Tesla
 M

2090

Tesla
 K

20

Tesla
 K

20X

Tesla
 K

40

Tesla
 K

40

Tesla
 P

100

Xeon Phi 7120 (KNC)

X
eo

n
P
hi

 7
29

0
(K

N
L)

G
F

L
O

P
/s

e
c

End of Year

Theoretical Peak Performance, Double Precision

INTEL Xeon CPUs

NVIDIA Tesla GPUs

AMD Radeon GPUs

INTEL Xeon Phis

Gr
ap

hi
c:
Ru

pp
[2
]

Member of the Helmholtz Association 28 May 2018 Slide 7 41

Status Quo Across Architectures
Memory Bandwidth

10
1

10
2

10
3

 2008 2010 2012 2014 2016

HD 3870

HD 4870
HD 5870

HD 6970

HD 6970
HD 7970 G

Hz Ed.

HD 8970
Fire

Pro W
9100

Fire
Pro S9150

X5482
X5492 W5590

X5680
X5690

E5-2690
E5-2697 v2

E5-2699 v3

E5-2699 v3

E5-2699 v4Tesla C
1060

Tesla C
1060 Tesla C

2050
Tesla M

2090

Tesla K20 Tesla K20X

Tesla K40

Tesla P100

Xeon Phi 7120 (KNC)

X
eo

n
P
hi

 7
29

0
(K

N
L)

G
B

/s
e

c

End of Year

Theoretical Peak Memory Bandwidth Comparison

INTEL Xeon CPUs

NVIDIA Tesla GPUs

AMD Radeon GPUs

INTEL Xeon Phis

Gr
ap

hi
c:
Ru

pp
[2
]

Member of the Helmholtz Association 28 May 2018 Slide 7 41

Status Quo Across Architectures
Memory Bandwidth

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 2008 2010 2012 2014 2016

HD 3870 HD 4870 HD 5870
HD 6970

HD 6970

HD 7970 G
Hz Ed.

HD 8970 Fire
Pro W

9100

Fire
Pro S9150

X5482
X5492

W5590

X5680
X5690

E5-2690

E5-2697 v2

E5-2699 v3

E5-2699 v3

E5-2699 v4

Tesla C
1060

Tesla C
1060

Tesla C
2050

Tesla M
2090

Tesla K20
Tesla K20X

Tesla K40

Tesla P100

Xeon Phi 7120 (KNC)

X
eo

n
P
hi

 7
29

0
(K

N
L)

G
B

/s
e

c

End of Year

Theoretical Peak Memory Bandwidth Comparison

INTEL Xeon CPUs

NVIDIA Tesla GPUs

AMD Radeon GPUs

INTEL Xeon Phis

Gr
ap

hi
c:
Ru

pp
[2
]

Member of the Helmholtz Association 28 May 2018 Slide 7 41

CPU vs. GPU
Amatter of specialties

Transporting one

Gr
ap

hi
cs
:L
ee

[3
]a

nd
Sh

ea
rin

gs
H
ol
id
ay
s[
4]

Transporting many

Member of the Helmholtz Association 28 May 2018 Slide 8 41

CPU vs. GPU
Amatter of specialties

Transporting one

Gr
ap

hi
cs
:L
ee

[3
]a

nd
Sh

ea
rin

gs
H
ol
id
ay
s[
4]

Transporting many

Member of the Helmholtz Association 28 May 2018 Slide 8 41

CPU vs. GPU
Chip

ALUALU

ALU ALU
Control

Cache

DRAM DRAM

Member of the Helmholtz Association 28 May 2018 Slide 9 41

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Member of the Helmholtz Association 28 May 2018 Slide 10 41

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Member of the Helmholtz Association 28 May 2018 Slide 10 41

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Member of the Helmholtz Association 28 May 2018 Slide 10 41

Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA
Memory transfers need special consideration!
Do as little as possible!
Formerly: Explicitly copy data to/from GPU
Now: Done automatically (performance…?)
P100: 16 GB RAM, 720 GB/s; V100: 16 (32) GB RAM, 900 GB/s

Member of the Helmholtz Association 28 May 2018 Slide 11 41

Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA

Memory transfers need special consideration!
Do as little as possible!
Formerly: Explicitly copy data to/from GPU
Now: Done automatically (performance…?)
P100: 16 GB RAM, 720 GB/s; V100: 16 (32) GB RAM, 900 GB/s

Unified Virtual Addressing

Member of the Helmholtz Association 28 May 2018 Slide 11 41

Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

PCIe
<16GB/s

HBM2
<720GB/s

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA

Memory transfers need special consideration!
Do as little as possible!
Formerly: Explicitly copy data to/from GPU
Now: Done automatically (performance…?)
P100: 16 GB RAM, 720 GB/s; V100: 16 (32) GB RAM, 900 GB/s

Member of the Helmholtz Association 28 May 2018 Slide 11 41

Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

PCIe
<16GB/s

HBM2
<720GB/s

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA
Memory transfers need special consideration!
Do as little as possible!

Formerly: Explicitly copy data to/from GPU
Now: Done automatically (performance…?)
P100: 16 GB RAM, 720 GB/s; V100: 16 (32) GB RAM, 900 GB/s

Member of the Helmholtz Association 28 May 2018 Slide 11 41

Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

PCIe
<16GB/s

HBM2
<720GB/s

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA and UM
Memory transfers need special consideration!
Do as little as possible!
Formerly: Explicitly copy data to/from GPU
Now: Done automatically (performance…?)

P100: 16 GB RAM, 720 GB/s; V100: 16 (32) GB RAM, 900 GB/s

Unified Memory

Member of the Helmholtz Association 28 May 2018 Slide 11 41

Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

HBM2
<720GB/s

NVLink
≈80GB/s

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA and UM
Memory transfers need special consideration!
Do as little as possible!
Formerly: Explicitly copy data to/from GPU
Now: Done automatically (performance…?)

P100: 16 GB RAM, 720 GB/s; V100: 16 (32) GB RAM, 900 GB/s

Member of the Helmholtz Association 28 May 2018 Slide 11 41

Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

HBM2
<720GB/s

NVLink
≈80GB/s

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA and UM
Memory transfers need special consideration!
Do as little as possible!
Formerly: Explicitly copy data to/from GPU
Now: Done automatically (performance…?)
P100: 16 GB RAM, 720 GB/s; V100: 16 (32) GB RAM, 900 GB/s

Member of the Helmholtz Association 28 May 2018 Slide 11 41

Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU memory

, transfer
program

2 Load GPU program, execute on SMs, get (cached) data from
memory; write back

3 Transfer results back to host memory

Member of the Helmholtz Association 28 May 2018 Slide 12 41

Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU memory

, transfer
program

2 Load GPU program, execute on SMs, get (cached) data from
memory; write back

3 Transfer results back to host memory

Member of the Helmholtz Association 28 May 2018 Slide 12 41

Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU memory, transfer
program

2 Load GPU program, execute on SMs, get (cached) data from
memory; write back

3 Transfer results back to host memory

Member of the Helmholtz Association 28 May 2018 Slide 12 41

Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU memory, transfer
program

2 Load GPU program, execute on SMs, get (cached) data from
memory; write back

3 Transfer results back to host memory

Member of the Helmholtz Association 28 May 2018 Slide 12 41

Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU memory, transfer
program

2 Load GPU program, execute on SMs, get (cached) data from
memory; write back

3 Transfer results back to host memory

Member of the Helmholtz Association 28 May 2018 Slide 12 41

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Member of the Helmholtz Association 28 May 2018 Slide 13 41

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Member of the Helmholtz Association 28 May 2018 Slide 13 41

Async
Following different streams

Problem: Memory transfer is comparably slow
Solution: Do something else in meantime (computation)!

→ Overlap tasks

Copy and compute engines run separately (streams)
Copy Compute Copy Compute

Copy Compute Copy Compute

GPU needs to be fed: Schedule many computations
CPU can do other work while GPU computes; synchronization

Member of the Helmholtz Association 28 May 2018 Slide 14 41

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Member of the Helmholtz Association 28 May 2018 Slide 15 41

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Member of the Helmholtz Association 28 May 2018 Slide 15 41

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)

Simultaneous Multithreading (SMT)
GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

+

+

+

C0

C1

C2

C3

=

=

=

=

Scalar

Member of the Helmholtz Association 28 May 2018 Slide 16 41

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)

Simultaneous Multithreading (SMT)
GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Member of the Helmholtz Association 28 May 2018 Slide 16 41

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Member of the Helmholtz Association 28 May 2018 Slide 16 41

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

Member of the Helmholtz Association 28 May 2018 Slide 16 41

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

Member of the Helmholtz Association 28 May 2018 Slide 16 41

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 28 May 2018 Slide 16 41

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)
CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 28 May 2018 Slide 16 41

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)
CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

Tesla V100

Gr
ap

hi
cs
:N

vi
di
a
Co

rp
or
at
io
n
[5
]

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 28 May 2018 Slide 16 41

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)
CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

Tesla V100

Gr
ap

hi
cs
:N

vi
di
a
Co

rp
or
at
io
n
[5
]

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 28 May 2018 Slide 16 41

SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)
CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

Tesla V100

Multiprocessor

Gr
ap

hi
cs
:N

vi
di
a
Co

rp
or
at
io
n
[5
]

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 28 May 2018 Slide 16 41

Low Latency vs. High Throughput
Maybe GPU’s ultimate feature

CPU Minimizes latency within each thread
GPU Hides latency with computations from other thread warps

CPU Core: Low Latency
T1 T2 T3 T4

GPU Streaming Multiprocessor: High Throughput
W1

W2

W3

W4
Waiting
Ready
Context Switch
Processing
Thread/Warp

Member of the Helmholtz Association 28 May 2018 Slide 17 41

Low Latency vs. High Throughput
Maybe GPU’s ultimate feature

CPU Minimizes latency within each thread
GPU Hides latency with computations from other thread warps

CPU Core: Low Latency
T1 T2 T3 T4

GPU Streaming Multiprocessor: High Throughput
W1

W2

W3

W4

Waiting
Ready
Context Switch
Processing
Thread/Warp

Member of the Helmholtz Association 28 May 2018 Slide 17 41

Low Latency vs. High Throughput
Maybe GPU’s ultimate feature

CPU Minimizes latency within each thread
GPU Hides latency with computations from other thread warps

CPU Core: Low Latency
T1 T2 T3 T4

GPU Streaming Multiprocessor: High Throughput
W1

W2

W3

W4
Waiting
Ready
Context Switch
Processing
Thread/Warp

Member of the Helmholtz Association 28 May 2018 Slide 17 41

CPU vs. GPU
Let’s summarize this!

Optimized for low latency
+ Large main memory
+ Fast clock rate
+ Large caches
+ Branch prediction
+ Powerful ALU
− Relatively lowmemory bandwidth
− Cachemisses costly
− Low performance per watt

Optimized for high throughput
+ High bandwidth main memory
+ Latency tolerant (parallelism)
+ More compute resources
+ High performance per watt
− Limited memory capacity
− Low per-thread performance
− Extension card

Member of the Helmholtz Association 28 May 2018 Slide 18 41

Programming GPUs

Member of the Helmholtz Association 28 May 2018 Slide 19 41

Preface: CPU
A simple CPU program!

SAXPY: y⃗ = a⃗x+ y⃗, with single precision
Part of LAPACK BLAS Level 1
void saxpy(int n, float a, float * x, float * y) {

for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

float a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy(n, a, x, y);

Member of the Helmholtz Association 28 May 2018 Slide 20 41

http://www.netlib.org/lapack/

Programming GPUs
Libraries

Member of the Helmholtz Association 28 May 2018 Slide 21 41

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries!

W
iz
ar
d:

Br
ea
ze
ll
[6
]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

th ano

Member of the Helmholtz Association 28 May 2018 Slide 22 41

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries!

W
iz
ar
d:

Br
ea
ze
ll
[6
]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

th ano

Member of the Helmholtz Association 28 May 2018 Slide 22 41

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries!

W
iz
ar
d:

Br
ea
ze
ll
[6
]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

th ano

Member of the Helmholtz Association 28 May 2018 Slide 22 41

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries!

W
iz
ar
d:

Br
ea
ze
ll
[6
]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

th ano

Member of the Helmholtz Association 28 May 2018 Slide 22 41

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries!

W
iz
ar
d:

Br
ea
ze
ll
[6
]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

th ano

Member of the Helmholtz Association 28 May 2018 Slide 22 41

cuBLAS
Parallel algebra

GPU-parallel BLAS (all 152 routines)
Single, double, complex data types
Constant competition with Intel’s MKL
Multi-GPU support

→ https://developer.nvidia.com/cublas
http://docs.nvidia.com/cuda/cublas

Member of the Helmholtz Association 28 May 2018 Slide 23 41

https://developer.nvidia.com/cublas
http://docs.nvidia.com/cuda/cublas

cuBLAS
Code example

float a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]);
cudaMallocManaged(&d_y, n * sizeof(y[0]);
cublasSetVector(n, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector(n, sizeof(y[0]), y, 1, d_y, 1);

cublasSaxpy(n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Member of the Helmholtz Association 28 May 2018 Slide 24 41

cuBLAS
Code example

float a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]);
cudaMallocManaged(&d_y, n * sizeof(y[0]);
cublasSetVector(n, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector(n, sizeof(y[0]), y, 1, d_y, 1);

cublasSaxpy(n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Initialize

Member of the Helmholtz Association 28 May 2018 Slide 24 41

cuBLAS
Code example

float a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]);
cudaMallocManaged(&d_y, n * sizeof(y[0]);
cublasSetVector(n, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector(n, sizeof(y[0]), y, 1, d_y, 1);

cublasSaxpy(n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Initialize

Allocate GPUmemory

Member of the Helmholtz Association 28 May 2018 Slide 24 41

cuBLAS
Code example

float a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]);
cudaMallocManaged(&d_y, n * sizeof(y[0]);
cublasSetVector(n, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector(n, sizeof(y[0]), y, 1, d_y, 1);

cublasSaxpy(n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Initialize

Allocate GPUmemory

Copy data to GPU

Member of the Helmholtz Association 28 May 2018 Slide 24 41

cuBLAS
Code example

float a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]);
cudaMallocManaged(&d_y, n * sizeof(y[0]);
cublasSetVector(n, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector(n, sizeof(y[0]), y, 1, d_y, 1);

cublasSaxpy(n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Initialize

Allocate GPUmemory

Copy data to GPU

Call BLAS routine

Member of the Helmholtz Association 28 May 2018 Slide 24 41

cuBLAS
Code example

float a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]);
cudaMallocManaged(&d_y, n * sizeof(y[0]);
cublasSetVector(n, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector(n, sizeof(y[0]), y, 1, d_y, 1);

cublasSaxpy(n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Initialize

Allocate GPUmemory

Copy data to GPU

Call BLAS routine

Copy result to host

Member of the Helmholtz Association 28 May 2018 Slide 24 41

cuBLAS
Code example

float a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]);
cudaMallocManaged(&d_y, n * sizeof(y[0]);
cublasSetVector(n, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector(n, sizeof(y[0]), y, 1, d_y, 1);

cublasSaxpy(n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Initialize

Allocate GPUmemory

Copy data to GPU

Call BLAS routine

Copy result to host

Finalize

Member of the Helmholtz Association 28 May 2018 Slide 24 41

Programming GPUs
OpenACC/ OpenMP

Member of the Helmholtz Association 28 May 2018 Slide 25 41

GPU Programming with Directives
Keepin’ you portable

Annotate serial source code by directives
#pragma acc loop
for (int i = 0; i < 1; i++) {};

OpenACC: Especially for GPUs;OpenMP: Has GPU support (in theory…)
Compiler interprets directives, creates according instructions

Pro
Portability

Other compiler? No problem! To it, it’s a
serial program
Different target architectures from same
code

Easy to program

Con
Only few compilers
Not all the raw power available
Harder to debug
Easy to programwrong

Member of the Helmholtz Association 28 May 2018 Slide 26 41

GPU Programming with Directives
Keepin’ you portable

Annotate serial source code by directives
#pragma acc loop
for (int i = 0; i < 1; i++) {};

OpenACC: Especially for GPUs;OpenMP: Has GPU support (in theory…)
Compiler interprets directives, creates according instructions

Pro
Portability

Other compiler? No problem! To it, it’s a
serial program
Different target architectures from same
code

Easy to program

Con
Only few compilers
Not all the raw power available
Harder to debug
Easy to programwrong

Member of the Helmholtz Association 28 May 2018 Slide 26 41

GPU Programming with Directives
Keepin’ you portable

Annotate serial source code by directives
#pragma acc loop
for (int i = 0; i < 1; i++) {};

OpenACC: Especially for GPUs;OpenMP: Has GPU support (in theory…)
Compiler interprets directives, creates according instructions

Pro
Portability

Other compiler? No problem! To it, it’s a
serial program
Different target architectures from same
code

Easy to program

Con
Only few compilers
Not all the raw power available
Harder to debug
Easy to programwrong

Member of the Helmholtz Association 28 May 2018 Slide 26 41

OpenACC
Code example

void saxpy_acc(int n, float a, float * x, float * y) {
#pragma acc kernels
for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

float a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy_acc(n, a, x, y);

Member of the Helmholtz Association 28 May 2018 Slide 27 41

OpenACC
Code example

void saxpy_acc(int n, float a, float * x, float * y) {
#pragma acc parallel loop copy(y) copyin(x)
for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

float a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy_acc(n, a, x, y);

Member of the Helmholtz Association 28 May 2018 Slide 27 41

Programming GPUs
CUDA C/C++

Member of the Helmholtz Association 28 May 2018 Slide 28 41

Programming GPU Directly
Finally…

Two solutions:

OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, …) 2009
Platform: Programming language (OpenCL C/C++), API, and compiler
Targets CPUs, GPUs, FPGAs, and other many-core machines
Fully open source
Different compilers available

CUDA NVIDIA’s GPU platform 2007
Platform: Drivers, programming language (CUDA C/C++), API, compiler,
debuggers, profilers, …
Only NVIDIA GPUs
Compilation with nvcc (free, but not open)
clang has CUDA support, but CUDA needed for last step
Also: CUDA Fortran

Choose what flavor you like, what colleagues/collaboration is using
Hardest: Come up with parallelized algorithm

Member of the Helmholtz Association 28 May 2018 Slide 29 41

Programming GPU Directly
Finally…

Two solutions:
OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, …) 2009

Platform: Programming language (OpenCL C/C++), API, and compiler
Targets CPUs, GPUs, FPGAs, and other many-core machines
Fully open source
Different compilers available

CUDA NVIDIA’s GPU platform 2007
Platform: Drivers, programming language (CUDA C/C++), API, compiler,
debuggers, profilers, …
Only NVIDIA GPUs
Compilation with nvcc (free, but not open)
clang has CUDA support, but CUDA needed for last step
Also: CUDA Fortran

Choose what flavor you like, what colleagues/collaboration is using
Hardest: Come up with parallelized algorithm

Member of the Helmholtz Association 28 May 2018 Slide 29 41

Programming GPU Directly
Finally…

Two solutions:
OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, …) 2009

Platform: Programming language (OpenCL C/C++), API, and compiler
Targets CPUs, GPUs, FPGAs, and other many-core machines
Fully open source
Different compilers available

CUDA NVIDIA’s GPU platform 2007
Platform: Drivers, programming language (CUDA C/C++), API, compiler,
debuggers, profilers, …
Only NVIDIA GPUs
Compilation with nvcc (free, but not open)
clang has CUDA support, but CUDA needed for last step
Also: CUDA Fortran

Choose what flavor you like, what colleagues/collaboration is using
Hardest: Come up with parallelized algorithm

Member of the Helmholtz Association 28 May 2018 Slide 29 41

Programming GPU Directly
Finally…

Two solutions:
OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, …) 2009

Platform: Programming language (OpenCL C/C++), API, and compiler
Targets CPUs, GPUs, FPGAs, and other many-core machines
Fully open source
Different compilers available

CUDA NVIDIA’s GPU platform 2007
Platform: Drivers, programming language (CUDA C/C++), API, compiler,
debuggers, profilers, …
Only NVIDIA GPUs
Compilation with nvcc (free, but not open)
clang has CUDA support, but CUDA needed for last step
Also: CUDA Fortran

Choose what flavor you like, what colleagues/collaboration is using
Hardest: Come up with parallelized algorithm

Member of the Helmholtz Association 28 May 2018 Slide 29 41

Programming GPU Directly
Finally…

Two solutions:
OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, …) 2009

Platform: Programming language (OpenCL C/C++), API, and compiler
Targets CPUs, GPUs, FPGAs, and other many-core machines
Fully open source
Different compilers available

CUDA NVIDIA’s GPU platform 2007
Platform: Drivers, programming language (CUDA C/C++), API, compiler,
debuggers, profilers, …
Only NVIDIA GPUs
Compilation with nvcc (free, but not open)
clang has CUDA support, but CUDA needed for last step
Also: CUDA Fortran

Choose what flavor you like, what colleagues/collaboration is using
Hardest: Come up with parallelized algorithm

Member of the Helmholtz Association 28 May 2018 Slide 29 41

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads

→ Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 28 May 2018 Slide 30 41

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Thread

→ Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 28 May 2018 Slide 30 41

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads

→ Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 28 May 2018 Slide 30 41

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 28 May 2018 Slide 30 41

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Block

→ Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5

0

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 28 May 2018 Slide 30 41

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 28 May 2018 Slide 30 41

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks → Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 28 May 2018 Slide 30 41

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks → Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 28 May 2018 Slide 30 41

CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads → Block

Blocks → Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Member of the Helmholtz Association 28 May 2018 Slide 30 41

CUDA SAXPY
With runtime-managed data transfers

__global__ void saxpy_cuda(int n, float a, float * x, float * y) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a * x[i] + y[i];

}

float a = 42;
int n = 10;
float x[n], y[n];
// fill x, y
cudaMallocManaged(&x, n * sizeof(float));
cudaMallocManaged(&y, n * sizeof(float));

saxpy_cuda<<<2, 5>>>(n, a, x, y);

cudaDeviceSynchronize();

Member of the Helmholtz Association 28 May 2018 Slide 31 41

Programming GPUs
Performance Analysis

Member of the Helmholtz Association 28 May 2018 Slide 32 41

GPU Tools
The helpful helpers helping helpless (and others)

NVIDIA
cuda-gdb GDB-like command line utility for debugging

cuda-memcheck Like Valgrind’s memcheck, for checking errors in memory accesses
Nsight IDE for GPU developing, based on Eclipse (Linux, OS X) or Visual Studio

(Windows)
nvprof Command line profiler, including detailed performance counters

Visual Profiler Timeline profiling and annotated performance experiments
OpenCL: CodeXL (Open Source, GPUOpen/AMD) – debugging, profiling.

Member of the Helmholtz Association 28 May 2018 Slide 33 41

http://gpuopen.com/compute-product/codexl/

GPU Tools
The helpful helpers helping helpless (and others)

NVIDIA
cuda-gdb GDB-like command line utility for debugging

cuda-memcheck Like Valgrind’s memcheck, for checking errors in memory accesses
Nsight IDE for GPU developing, based on Eclipse (Linux, OS X) or Visual Studio

(Windows)
nvprof Command line profiler, including detailed performance counters

Visual Profiler Timeline profiling and annotated performance experiments
OpenCL: CodeXL (Open Source, GPUOpen/AMD) – debugging, profiling.

Member of the Helmholtz Association 28 May 2018 Slide 33 41

http://gpuopen.com/compute-product/codexl/

nvprof
Command that line

$ nvprof ./matrixMul -wA=1024 -hA=1024 -wB=1024 -hB=1024
==37064== Profiling application: ./matrixMul -wA=1024 -hA=1024 -wB=1024 -hB=1024
==37064== Profiling result:
Time(%) Time Calls Avg Min Max Name
99.19% 262.43ms 301 871.86us 863.88us 882.44us void matrixMulCUDA<int=32>(float*, float*, float*, int, int)
0.58% 1.5428ms 2 771.39us 764.65us 778.12us [CUDA memcpy HtoD]
0.23% 599.40us 1 599.40us 599.40us 599.40us [CUDA memcpy DtoH]

==37064== API calls:
Time(%) Time Calls Avg Min Max Name
61.26% 258.38ms 1 258.38ms 258.38ms 258.38ms cudaEventSynchronize
35.68% 150.49ms 3 50.164ms 914.97us 148.65ms cudaMalloc
0.73% 3.0774ms 3 1.0258ms 1.0097ms 1.0565ms cudaMemcpy
0.62% 2.6287ms 4 657.17us 655.12us 660.56us cuDeviceTotalMem
0.56% 2.3408ms 301 7.7760us 7.3810us 53.103us cudaLaunch
0.48% 2.0111ms 364 5.5250us 235ns 201.63us cuDeviceGetAttribute
0.21% 872.52us 1 872.52us 872.52us 872.52us cudaDeviceSynchronize
0.15% 612.20us 1505 406ns 361ns 1.1970us cudaSetupArgument
0.12% 499.01us 3 166.34us 140.45us 216.16us cudaFree

Member of the Helmholtz Association 28 May 2018 Slide 34 41

Visual Profiler

Member of the Helmholtz Association 28 May 2018 Slide 35 41

Advanced Topics

Somuchmore interesting things to show!
Optimize memory transfers to reduce overhead
Optimize applications for GPU architecture
Drop-in BLAS acceleration with NVBLAS ($LD_PRELOAD)
Tensor Cores for Deep Learning
Use multiple GPUs

On one node
Across many nodes→MPI

…
Most of that: Addressed at dedicated training courses

Member of the Helmholtz Association 28 May 2018 Slide 36 41

Using GPUs on JURECA

Member of the Helmholtz Association 28 May 2018 Slide 37 41

Compiling on JURECA

CUDA Module: module load CUDA/9.1.85
Compile: nvcc file.cu
Default host compiler: g++; use nvcc_pgc++ for PGI compiler
cuBLAS: g++ file.cpp -I$CUDA_HOME/include -L$CUDA_HOME/lib64
-lcublas -lcudart

OpenACC Module: module load PGI/17.10-GCC-5.5.0
Compile: pgc++ -acc -ta=tesla file.cpp

MPI Module: module load MVAPICH2/2.3a-GDR
Enabled for CUDA (CUDA-aware); no need to copy data to host before
transfer

Member of the Helmholtz Association 28 May 2018 Slide 38 41

Running on JURECA

Dedicated GPU partitions: gpus and develgpus (+ vis)
--partition=develgpus Total 4 nodes (Job: <2 h,≤ 2 nodes)
--partition=gpus Total 70 nodes (Job: <1 d,≤ 32 nodes)
Needed: Resource configuration with --gres
--gres=gpu:2
--gres=gpu:4
--gres=mem1024,gpu:2 --partition=vis

→ See online documentation

Member of the Helmholtz Association 28 May 2018 Slide 39 41

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/UserInfo/QuickIntroduction.html?nn=1803700#doc1803722bodyText8

Example

96 tasks in total, running on 4 nodes
Per node: 4 GPUs
#!/bin/bash -x
#SBATCH --nodes=4
#SBATCH --ntasks=96
#SBATCH --ntasks-per-node=24
#SBATCH --output=gpu-out.%j
#SBATCH --error=gpu-err.%j
#SBATCH --time=00:15:00

#SBATCH --partition=gpus
#SBATCH --gres=gpu:4

srun ./gpu-prog

Member of the Helmholtz Association 28 May 2018 Slide 40 41

Conclusion, Resources

GPUs provide highly-parallel computing power
We have many devices installed at JSC, ready to be used!

Training courses by JSC
CUDA Course April 2019
OpenACC Course 29 - 30 October 2018
Generally: see online documentation and sc@fz-juelich.de
Further consultation via our lab: NVIDIA Application Lab in Jülich; contact me!
Interested in JURON? Get access!

Member of the Helmholtz Association 28 May 2018 Slide 41 41

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/UserInfo/GpuNodes.html?nn=1803700
mailto:sc@fz-juelich.de
mailto:a.herten@fz-juelich.de
https://trac.version.fz-juelich.de/hbp-pcp/wiki/Public

Conclusion, Resources

GPUs provide highly-parallel computing power
We have many devices installed at JSC, ready to be used!
Training courses by JSC
CUDA Course April 2019
OpenACC Course 29 - 30 October 2018
Generally: see online documentation and sc@fz-juelich.de

Further consultation via our lab: NVIDIA Application Lab in Jülich; contact me!
Interested in JURON? Get access!

Thank you

for your att
ention!

a.herten@fz-juelich.de

Member of the Helmholtz Association 28 May 2018 Slide 41 41

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/UserInfo/GpuNodes.html?nn=1803700
mailto:sc@fz-juelich.de
mailto:a.herten@fz-juelich.de
https://trac.version.fz-juelich.de/hbp-pcp/wiki/Public
mailto:a.herten@fz-juelich.de

Conclusion, Resources

GPUs provide highly-parallel computing power
We have many devices installed at JSC, ready to be used!
Training courses by JSC
CUDA Course April 2019
OpenACC Course 29 - 30 October 2018
Generally: see online documentation and sc@fz-juelich.de
Further consultation via our lab: NVIDIA Application Lab in Jülich; contact me!

Interested in JURON? Get access!
Thank you

for your att
ention!

a.herten@fz-juelich.de

Member of the Helmholtz Association 28 May 2018 Slide 41 41

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/UserInfo/GpuNodes.html?nn=1803700
mailto:sc@fz-juelich.de
mailto:a.herten@fz-juelich.de
https://trac.version.fz-juelich.de/hbp-pcp/wiki/Public
mailto:a.herten@fz-juelich.de

Conclusion, Resources

GPUs provide highly-parallel computing power
We have many devices installed at JSC, ready to be used!
Training courses by JSC
CUDA Course April 2019
OpenACC Course 29 - 30 October 2018
Generally: see online documentation and sc@fz-juelich.de
Further consultation via our lab: NVIDIA Application Lab in Jülich; contact me!
Interested in JURON? Get access!

Thank you

for your att
ention!

a.herten@fz-juelich.de

Member of the Helmholtz Association 28 May 2018 Slide 41 41

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/UserInfo/GpuNodes.html?nn=1803700
mailto:sc@fz-juelich.de
mailto:a.herten@fz-juelich.de
https://trac.version.fz-juelich.de/hbp-pcp/wiki/Public
mailto:a.herten@fz-juelich.de

Conclusion, Resources

GPUs provide highly-parallel computing power
We have many devices installed at JSC, ready to be used!
Training courses by JSC
CUDA Course April 2019
OpenACC Course 29 - 30 October 2018
Generally: see online documentation and sc@fz-juelich.de
Further consultation via our lab: NVIDIA Application Lab in Jülich; contact me!
Interested in JURON? Get access!

Thank you

for your att
ention!

a.herten@fz-juelich.de

Member of the Helmholtz Association 28 May 2018 Slide 41 41

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/UserInfo/GpuNodes.html?nn=1803700
mailto:sc@fz-juelich.de
mailto:a.herten@fz-juelich.de
https://trac.version.fz-juelich.de/hbp-pcp/wiki/Public
mailto:a.herten@fz-juelich.de

APPENDIX

Member of the Helmholtz Association 28 May 2018 Slide 1 9

Appendix
Glossary
References

Member of the Helmholtz Association 28 May 2018 Slide 2 9

Glossary I

API A programmatic interface to software by well-defined functions. Short for
application programming interface. 71, 72, 73, 74, 75

CUDA Computing platform for GPUs from NVIDIA. Provides, among others, CUDA
C/C++. 2, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 93, 96, 97, 98,
99, 100, 103

JSC Jülich Supercomputing Centre, the supercomputing institute of
Forschungszentrum Jülich, Germany. 2, 96, 97, 98, 99, 100, 103

JURECA Amulti-purpose supercomputer with 1800 nodes at JSC. 2, 3, 92, 93, 94
JURON One of the two HBP pilot system in Jülich; name derived from Juelich and

Neuron. 4

Member of the Helmholtz Association 28 May 2018 Slide 3 9

Glossary II
JUWELS Jülich’s new supercomputer, the successor of JUQUEEN. 5

MPI The Message Passing Interface, a API definition for multi-node computing. 91, 93

NVIDIA US technology company creating GPUs. 3, 4, 5, 71, 72, 73, 74, 75, 87, 88, 96, 97,
98, 99, 100, 103

NVLink NVIDIA’s communication protocol connecting CPU↔ GPU and GPU↔ GPUwith
high bandwidth. 4, 103

OpenACC Directive-based programming, primarily for many-core machines. 2, 64, 65, 66,
67, 68, 69, 93, 96, 97, 98, 99, 100

OpenCL The Open Computing Language. Framework for writing code for heterogeneous
architectures (CPU, GPU, DSP, FPGA). The alternative to CUDA. 71, 72, 73, 74, 75,
87, 88

Member of the Helmholtz Association 28 May 2018 Slide 4 9

Glossary III

OpenMP Directive-based programming, primarily for multi-threadedmachines. 2, 64, 65,
66, 67

P100 A large GPUwith the Pascal architecture from NVIDIA. It employs NVLink as its
interconnect and has fast HBM2memory. 4

Pascal GPU architecture from NVIDIA (announced 2016). 103
POWER CPU architecture from IBM, earlier: PowerPC. See also POWER8. 103
POWER8 Version 8 of IBM’s POWERprocessor, available also under the OpenPOWER

Foundation. 4, 103

SAXPY Single-precision A× X+ Y. A simple code example of scaling a vector and adding
an offset. 49, 85

Member of the Helmholtz Association 28 May 2018 Slide 5 9

Glossary IV
Tesla The GPU product line for general purpose computing computing of NVIDIA. 3, 4,

5

CPU Central Processing Unit. 3, 4, 5, 11, 12, 13, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 49, 71, 72, 73, 74, 75, 103

GPU Graphics Processing Unit. 2, 3, 4, 5, 6, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,
48, 50, 51, 52, 53, 54, 55, 56, 64, 65, 66, 67, 70, 71, 72, 73, 74, 75, 86, 87, 88, 91, 92,
94, 95, 96, 97, 98, 99, 100, 103

HBP Human Brain Project. 103

SIMD Single Instruction, Multiple Data. 34, 35, 36, 37, 38, 39, 40, 41, 42, 43

Member of the Helmholtz Association 28 May 2018 Slide 6 9

Glossary V

SIMT Single Instruction, Multiple Threads. 14, 15, 16, 29, 30, 32, 33, 34, 35, 36, 37, 38,
39, 40, 41, 42, 43

SM Streaming Multiprocessor. 34, 35, 36, 37, 38, 39, 40, 41, 42, 43

SMT Simultaneous Multithreading. 34, 35, 36, 37, 38, 39, 40, 41, 42, 43

Member of the Helmholtz Association 28 May 2018 Slide 7 9

References I

[2] Karl Rupp. Pictures: CPU/GPU Performance Comparison. URL:
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-
characteristics-over-time/ (pages 8–10).

[6] Wes Breazell. Picture: Wizard. URL:
https://thenounproject.com/wes13/collection/its-a-wizards-world/
(pages 51–55).

Member of the Helmholtz Association 28 May 2018 Slide 8 9

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://thenounproject.com/wes13/collection/its-a-wizards-world/

References: Images, Graphics I

[1] Alexandre Debiève. Bowels of computer. Freely available at Unsplash. URL:
https://unsplash.com/photos/FO7JIlwjOtU.

[3] Mark Lee. Picture: kawasaki ninja. URL:
https://www.flickr.com/photos/pochacco20/39030210/ (pages 11, 12).

[4] Shearings Holidays. Picture: Shearings coach 636. URL:
https://www.flickr.com/photos/shearings/13583388025/ (pages 11, 12).

[5] Nvidia Corporation. Pictures: Volta GPU. Volta Architecture Whitepaper. URL:
https://images.nvidia.com/content/volta-architecture/pdf/Volta-
Architecture-Whitepaper-v1.0.pdf (pages 41–43).

Member of the Helmholtz Association 28 May 2018 Slide 9 9

https://unsplash.com/photos/FO7JIlwjOtU
https://www.flickr.com/photos/pochacco20/39030210/
https://www.flickr.com/photos/shearings/13583388025/
https://images.nvidia.com/content/volta-architecture/pdf/Volta-Architecture-Whitepaper-v1.0.pdf
https://images.nvidia.com/content/volta-architecture/pdf/Volta-Architecture-Whitepaper-v1.0.pdf

	Outline
	*gpu at *jsc
	*gpu Architecture
	Empirical Motivation
	Comparisons
	3 Core Features
	High Throughput
	Summary

	Programming GPUs
	Libraries
	*openacc/ *openmp
	CUDA C/C++
	Performance Analysis
	Advanced Topics

	Using *gpu on *jureca
	Compiling
	Resource Allocation

	Further Resources
	Appendix
	Appendix
	Glossary

	Glossary
	Acronyms
	References

	References
	References

