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JURECA – Jülich’s Multi-Purpose Supercomputer
1872 nodes with Intel Xeon E5 2680 v3 Haswell CPUs (2× 12 cores)
75 nodes with 2 NVIDIA Tesla K80 cards (look like 4 GPUs); each 2× 12GB RAM
JURECA Booster: 1640 nodes with Intel Xeon Phi Knights Landing
1.8 (CPU) + 0.44 (GPU) + 5 (KNL) PFLOP/s peak performance (#29)

Member of the Helmholtz Association 28 May 2018 Slide 2 41



JURONJULIA

JURON – A Human Brain Project Prototype
18 nodes with IBM POWER8NVL CPUs (2× 10 cores)
Per Node: 4 NVIDIA Tesla P100 cards (16 GB HBM2 memory), connected via NVLink
GPU: 0.38 PFLOP/s peak performance
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JUWELS – Jülich’s New Large System currently under construction
2500 nodes with Intel Xeon CPUs (2× 24 cores)
48 nodes with 4 NVIDIA Tesla V100 cards (16 GB HBM2 memory)
10.4 (CPU) + 1.6 (GPU) + PFLOP/s peak performance
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GPU Architecture
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Why?



Status Quo Across Architectures
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Status Quo Across Architectures
Memory Bandwidth
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CPU vs. GPU
Amatter of specialties

Transporting one
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CPU vs. GPU
Chip

ALUALU

ALU ALU
Control

Cache

DRAM DRAM
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GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput
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Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA
Memory transfers need special consideration!
Do as little as possible!
Formerly: Explicitly copy data to/from GPU
Now: Done automatically (performance…?)
P100: 16 GB RAM, 720 GB/s; V100: 16 (32) GB RAM, 900 GB/s

Member of the Helmholtz Association 28 May 2018 Slide 11 41



Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA

Memory transfers need special consideration!
Do as little as possible!
Formerly: Explicitly copy data to/from GPU
Now: Done automatically (performance…?)
P100: 16 GB RAM, 720 GB/s; V100: 16 (32) GB RAM, 900 GB/s

Unified Virtual Addressing

Member of the Helmholtz Association 28 May 2018 Slide 11 41



Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

PCIe
<16GB/s

HBM2
<720GB/s

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA

Memory transfers need special consideration!
Do as little as possible!
Formerly: Explicitly copy data to/from GPU
Now: Done automatically (performance…?)
P100: 16 GB RAM, 720 GB/s; V100: 16 (32) GB RAM, 900 GB/s

Member of the Helmholtz Association 28 May 2018 Slide 11 41



Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

PCIe
<16GB/s

HBM2
<720GB/s

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA
Memory transfers need special consideration!
Do as little as possible!

Formerly: Explicitly copy data to/from GPU
Now: Done automatically (performance…?)
P100: 16 GB RAM, 720 GB/s; V100: 16 (32) GB RAM, 900 GB/s

Member of the Helmholtz Association 28 May 2018 Slide 11 41



Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

PCIe
<16GB/s

HBM2
<720GB/s

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA and UM
Memory transfers need special consideration!
Do as little as possible!
Formerly: Explicitly copy data to/from GPU
Now: Done automatically (performance…?)

P100: 16 GB RAM, 720 GB/s; V100: 16 (32) GB RAM, 900 GB/s

Unified Memory

Member of the Helmholtz Association 28 May 2018 Slide 11 41



Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

HBM2
<720GB/s

NVLink
≈80GB/s

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA and UM
Memory transfers need special consideration!
Do as little as possible!
Formerly: Explicitly copy data to/from GPU
Now: Done automatically (performance…?)

P100: 16 GB RAM, 720 GB/s; V100: 16 (32) GB RAM, 900 GB/s

Member of the Helmholtz Association 28 May 2018 Slide 11 41



Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

HBM2
<720GB/s

NVLink
≈80GB/s

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA and UM
Memory transfers need special consideration!
Do as little as possible!
Formerly: Explicitly copy data to/from GPU
Now: Done automatically (performance…?)
P100: 16 GB RAM, 720 GB/s; V100: 16 (32) GB RAM, 900 GB/s

Member of the Helmholtz Association 28 May 2018 Slide 11 41



Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU memory

, transfer
program

2 Load GPU program, execute on SMs, get (cached) data from
memory; write back

3 Transfer results back to host memory
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GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Member of the Helmholtz Association 28 May 2018 Slide 13 41



GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Member of the Helmholtz Association 28 May 2018 Slide 13 41



Async
Following different streams

Problem: Memory transfer is comparably slow
Solution: Do something else in meantime (computation)!

→ Overlap tasks

Copy and compute engines run separately (streams)
Copy Compute Copy Compute

Copy Compute Copy Compute

GPU needs to be fed: Schedule many computations
CPU can do other work while GPU computes; synchronization
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SIMT
SIMT= SIMD⊕ SMT

CPU:
Single Instruction, Multiple Data (SIMD)

Simultaneous Multithreading (SMT)
GPU: Single Instruction, Multiple Threads (SIMT)

CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if
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Low Latency vs. High Throughput
Maybe GPU’s ultimate feature

CPU Minimizes latency within each thread
GPU Hides latency with computations from other thread warps

CPU Core: Low Latency
T1 T2 T3 T4

GPU Streaming Multiprocessor: High Throughput
W1

W2

W3

W4
Waiting
Ready
Context Switch
Processing
Thread/Warp
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CPU vs. GPU
Let’s summarize this!

Optimized for low latency
+ Large main memory
+ Fast clock rate
+ Large caches
+ Branch prediction
+ Powerful ALU
− Relatively lowmemory bandwidth
− Cachemisses costly
− Low performance per watt

Optimized for high throughput
+ High bandwidth main memory
+ Latency tolerant (parallelism)
+ More compute resources
+ High performance per watt
− Limited memory capacity
− Low per-thread performance
− Extension card
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Programming GPUs
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Preface: CPU
A simple CPU program!

SAXPY: y⃗ = a⃗x+ y⃗, with single precision
Part of LAPACK BLAS Level 1
void saxpy(int n, float a, float * x, float * y) {

for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

float a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy(n, a, x, y);
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Programming GPUs
Libraries
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Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries!

W
iz
ar
d:

Br
ea
ze
ll
[6
]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

th ano
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cuBLAS
Parallel algebra

GPU-parallel BLAS (all 152 routines)
Single, double, complex data types
Constant competition with Intel’s MKL
Multi-GPU support

→ https://developer.nvidia.com/cublas
http://docs.nvidia.com/cuda/cublas
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cuBLAS
Code example

float a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]);
cudaMallocManaged(&d_y, n * sizeof(y[0]);
cublasSetVector(n, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector(n, sizeof(y[0]), y, 1, d_y, 1);

cublasSaxpy(n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);
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Programming GPUs
OpenACC/ OpenMP
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GPU Programming with Directives
Keepin’ you portable

Annotate serial source code by directives
#pragma acc loop
for (int i = 0; i < 1; i++) {};

OpenACC: Especially for GPUs;OpenMP: Has GPU support (in theory…)
Compiler interprets directives, creates according instructions

Pro
Portability

Other compiler? No problem! To it, it’s a
serial program
Different target architectures from same
code

Easy to program

Con
Only few compilers
Not all the raw power available
Harder to debug
Easy to programwrong
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OpenACC
Code example

void saxpy_acc(int n, float a, float * x, float * y) {
#pragma acc kernels
for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

float a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy_acc(n, a, x, y);
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OpenACC
Code example

void saxpy_acc(int n, float a, float * x, float * y) {
#pragma acc parallel loop copy(y) copyin(x)
for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

float a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy_acc(n, a, x, y);
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Programming GPUs
CUDA C/C++
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Programming GPU Directly
Finally…

Two solutions:

OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, …) 2009
Platform: Programming language (OpenCL C/C++), API, and compiler
Targets CPUs, GPUs, FPGAs, and other many-core machines
Fully open source
Different compilers available

CUDA NVIDIA’s GPU platform 2007
Platform: Drivers, programming language (CUDA C/C++), API, compiler,
debuggers, profilers, …
Only NVIDIA GPUs
Compilation with nvcc (free, but not open)
clang has CUDA support, but CUDA needed for last step
Also: CUDA Fortran

Choose what flavor you like, what colleagues/collaboration is using
Hardest: Come up with parallelized algorithm
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CUDA’s Parallel Model
In software: Threads, Blocks

Methods to exploit parallelism:

Threads

→ Block

Blocks

→ Grid

Threads & blocks in 3D3D3D3D

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!
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CUDA SAXPY
With runtime-managed data transfers

__global__ void saxpy_cuda(int n, float a, float * x, float * y) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a * x[i] + y[i];

}

float a = 42;
int n = 10;
float x[n], y[n];
// fill x, y
cudaMallocManaged(&x, n * sizeof(float));
cudaMallocManaged(&y, n * sizeof(float));

saxpy_cuda<<<2, 5>>>(n, a, x, y);

cudaDeviceSynchronize();
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Programming GPUs
Performance Analysis
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GPU Tools
The helpful helpers helping helpless (and others)

NVIDIA
cuda-gdb GDB-like command line utility for debugging

cuda-memcheck Like Valgrind’s memcheck, for checking errors in memory accesses
Nsight IDE for GPU developing, based on Eclipse (Linux, OS X) or Visual Studio

(Windows)
nvprof Command line profiler, including detailed performance counters

Visual Profiler Timeline profiling and annotated performance experiments
OpenCL: CodeXL (Open Source, GPUOpen/AMD) – debugging, profiling.
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nvprof
Command that line

$ nvprof ./matrixMul -wA=1024 -hA=1024 -wB=1024 -hB=1024
==37064== Profiling application: ./matrixMul -wA=1024 -hA=1024 -wB=1024 -hB=1024
==37064== Profiling result:
Time(%) Time Calls Avg Min Max Name
99.19% 262.43ms 301 871.86us 863.88us 882.44us void matrixMulCUDA<int=32>(float*, float*, float*, int, int)
0.58% 1.5428ms 2 771.39us 764.65us 778.12us [CUDA memcpy HtoD]
0.23% 599.40us 1 599.40us 599.40us 599.40us [CUDA memcpy DtoH]

==37064== API calls:
Time(%) Time Calls Avg Min Max Name
61.26% 258.38ms 1 258.38ms 258.38ms 258.38ms cudaEventSynchronize
35.68% 150.49ms 3 50.164ms 914.97us 148.65ms cudaMalloc
0.73% 3.0774ms 3 1.0258ms 1.0097ms 1.0565ms cudaMemcpy
0.62% 2.6287ms 4 657.17us 655.12us 660.56us cuDeviceTotalMem
0.56% 2.3408ms 301 7.7760us 7.3810us 53.103us cudaLaunch
0.48% 2.0111ms 364 5.5250us 235ns 201.63us cuDeviceGetAttribute
0.21% 872.52us 1 872.52us 872.52us 872.52us cudaDeviceSynchronize
0.15% 612.20us 1505 406ns 361ns 1.1970us cudaSetupArgument
0.12% 499.01us 3 166.34us 140.45us 216.16us cudaFree
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Visual Profiler
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Advanced Topics

Somuchmore interesting things to show!
Optimize memory transfers to reduce overhead
Optimize applications for GPU architecture
Drop-in BLAS acceleration with NVBLAS ($LD_PRELOAD)
Tensor Cores for Deep Learning
Use multiple GPUs

On one node
Across many nodes→MPI

…
Most of that: Addressed at dedicated training courses

Member of the Helmholtz Association 28 May 2018 Slide 36 41



Using GPUs on JURECA
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Compiling on JURECA

CUDA Module: module load CUDA/9.1.85
Compile: nvcc file.cu
Default host compiler: g++; use nvcc_pgc++ for PGI compiler
cuBLAS: g++ file.cpp -I$CUDA_HOME/include -L$CUDA_HOME/lib64
-lcublas -lcudart

OpenACC Module: module load PGI/17.10-GCC-5.5.0
Compile: pgc++ -acc -ta=tesla file.cpp

MPI Module: module load MVAPICH2/2.3a-GDR
Enabled for CUDA (CUDA-aware); no need to copy data to host before
transfer
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Running on JURECA

Dedicated GPU partitions: gpus and develgpus (+ vis)
--partition=develgpus Total 4 nodes (Job: <2 h,≤ 2 nodes)
--partition=gpus Total 70 nodes (Job: <1 d,≤ 32 nodes)
Needed: Resource configuration with --gres
--gres=gpu:2
--gres=gpu:4
--gres=mem1024,gpu:2 --partition=vis

→ See online documentation

Member of the Helmholtz Association 28 May 2018 Slide 39 41

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/UserInfo/QuickIntroduction.html?nn=1803700#doc1803722bodyText8


Example

96 tasks in total, running on 4 nodes
Per node: 4 GPUs
#!/bin/bash -x
#SBATCH --nodes=4
#SBATCH --ntasks=96
#SBATCH --ntasks-per-node=24
#SBATCH --output=gpu-out.%j
#SBATCH --error=gpu-err.%j
#SBATCH --time=00:15:00

#SBATCH --partition=gpus
#SBATCH --gres=gpu:4

srun ./gpu-prog
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Conclusion, Resources

GPUs provide highly-parallel computing power
We have many devices installed at JSC, ready to be used!

Training courses by JSC
CUDA Course April 2019
OpenACC Course 29 - 30 October 2018
Generally: see online documentation and sc@fz-juelich.de
Further consultation via our lab: NVIDIA Application Lab in Jülich; contact me!
Interested in JURON? Get access!
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a.herten@fz-juelich.de
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Appendix
Glossary
References
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Glossary I

API A programmatic interface to software by well-defined functions. Short for
application programming interface. 71, 72, 73, 74, 75

CUDA Computing platform for GPUs from NVIDIA. Provides, among others, CUDA
C/C++. 2, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 93, 96, 97, 98,
99, 100, 103

JSC Jülich Supercomputing Centre, the supercomputing institute of
Forschungszentrum Jülich, Germany. 2, 96, 97, 98, 99, 100, 103

JURECA Amulti-purpose supercomputer with 1800 nodes at JSC. 2, 3, 92, 93, 94
JURON One of the two HBP pilot system in Jülich; name derived from Juelich and

Neuron. 4
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Glossary II
JUWELS Jülich’s new supercomputer, the successor of JUQUEEN. 5

MPI The Message Passing Interface, a API definition for multi-node computing. 91, 93

NVIDIA US technology company creating GPUs. 3, 4, 5, 71, 72, 73, 74, 75, 87, 88, 96, 97,
98, 99, 100, 103

NVLink NVIDIA’s communication protocol connecting CPU↔ GPU and GPU↔ GPUwith
high bandwidth. 4, 103

OpenACC Directive-based programming, primarily for many-core machines. 2, 64, 65, 66,
67, 68, 69, 93, 96, 97, 98, 99, 100

OpenCL The Open Computing Language. Framework for writing code for heterogeneous
architectures (CPU, GPU, DSP, FPGA). The alternative to CUDA. 71, 72, 73, 74, 75,
87, 88
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Glossary III

OpenMP Directive-based programming, primarily for multi-threadedmachines. 2, 64, 65,
66, 67

P100 A large GPUwith the Pascal architecture from NVIDIA. It employs NVLink as its
interconnect and has fast HBM2memory. 4

Pascal GPU architecture from NVIDIA (announced 2016). 103
POWER CPU architecture from IBM, earlier: PowerPC. See also POWER8. 103
POWER8 Version 8 of IBM’s POWERprocessor, available also under the OpenPOWER

Foundation. 4, 103

SAXPY Single-precision A× X+ Y. A simple code example of scaling a vector and adding
an offset. 49, 85
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Glossary IV
Tesla The GPU product line for general purpose computing computing of NVIDIA. 3, 4,

5

CPU Central Processing Unit. 3, 4, 5, 11, 12, 13, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 49, 71, 72, 73, 74, 75, 103

GPU Graphics Processing Unit. 2, 3, 4, 5, 6, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,
48, 50, 51, 52, 53, 54, 55, 56, 64, 65, 66, 67, 70, 71, 72, 73, 74, 75, 86, 87, 88, 91, 92,
94, 95, 96, 97, 98, 99, 100, 103

HBP Human Brain Project. 103

SIMD Single Instruction, Multiple Data. 34, 35, 36, 37, 38, 39, 40, 41, 42, 43
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Glossary V

SIMT Single Instruction, Multiple Threads. 14, 15, 16, 29, 30, 32, 33, 34, 35, 36, 37, 38,
39, 40, 41, 42, 43

SM Streaming Multiprocessor. 34, 35, 36, 37, 38, 39, 40, 41, 42, 43

SMT Simultaneous Multithreading. 34, 35, 36, 37, 38, 39, 40, 41, 42, 43
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