Fundamentals of Long Short-Term Memory

June 7th, 2018
Juelich Supercomputing Centre, Germany
Outline of the Course

1. Introduction to Deep Learning
2. Fundamentals of Convolutional Neural Networks (CNNs)
5. Model Selection and Regularization
6. Fundamentals of Long Short-Term Memory (LSTM)
7. LSTM Applications and Challenges
8. Deep Reinforcement Learning
Outline

- Recurrent Neural Networks (RNNs)
 - Sequence Models & Dataset Impact
 - Limitations of Feed Forward Networks
 - RNN Model & Unrolling
 - RNN Cells & Topologies
 - Simple Application Example

- Long Short-Term Memory (LSTMs)
 - LSTM Model & Memory Cells
 - Vanishing Gradient Problem
 - Keras and Tensorflow Tools
 - Different Useful LSTM Models
 - Simple Application Example
Deep Learning Architectures

- **Deep Neural Network (DNN)**
 - ‘Shallow ANN’ approach with many hidden layers between input/output

- **Convolutional Neural Network (CNN, sometimes ConvNet)**
 - Connectivity pattern between neurons is like animal visual cortex

- **Deep Belief Network (DBN)**
 - Composed of multiple layers of variables; only connections between layers

- **Recurrent Neural Network (RNN)**
 - ‘ANN’ but connections form a directed cycle; state and temporal behaviour

- Deep Learning architectures can be classified into Deep Neural Networks, Convolutional Neural Networks, Deep Belief Networks, and Recurrent Neural Networks all with unique characteristics.
- Deep Learning needs ‘big data’ to work well & for high accuracy – works not well on sparse data.
Revisit CNNs vs. RNNs

- CNNs (cf. day one)
 - Example: remote sensing application domain, hyperspectral datasets
 - Neural network key property: exploit spatial geometry of inputs
 - Approach: Apply convolution & pooling (height x width x feature) dimensions

- RNNs
 - Examples: texts, speech, time series datasets
 - Neural network key property: exploit sequential nature of inputs
 - Approach: Train a graph of ‘RNN cells’ & each cell performs the same operation on every element in the given sequence

RNNs are used to create sequence models whereby the occurrence of an element in the sequence (e.g. text, speech, time series) is dependent on the elements that appeared before it.
Sequence Models

- Sequence models enable various sequence predictions that are inherent different to other more traditional predictive modeling techniques or supervised learning approaches
- In contrast to mathematical sets often used, the ‘sequence’ model imposes an explicit order on the input/output data that needs to be preserved in training and/or inference
- Sequence models are driven by application goals and include sequence prediction, sequence classification, sequence generation, and sequence-to-sequence prediction

- Model Categorization
 - Based on different inputs/outputs to/from the sequence models

- Practical ‘standard dataset’ perspective
 - Often the order of samples is not important
 - Training/testing datasets and their samples have often no explicit order (i.e. ‘sets’)

- Practical ‘sequence dataset’ perspective
 - Order of samples is important
 - Sequence model learning/inference needs this order
Limitations of Feed Forward ANN (cf. Day One)

- Selected application examples revisited
 - Predicting next word in a sentence requires ‘history’ of previous words
 - Translating European in Chinese language requires ‘history’ of context

- Traditional feed forward artificial neural networks show limits when a certain ‘history’ is required
- Each Backpropagation forward/backward pass starts a new pass independently from pass before
- The ‘history’ in the data is often a specific type of ‘sequence’ that required another approach
Recurrent Neural Network (RNN)

- A Recurrent Neural Network (RNN) consists of cyclic connections that enable the neural network to better model sequence data compared to a traditional feed forward artificial neural network (ANN).
- RNNs consists of ‘loops’ (i.e. cyclic connections) that allow for information to persist while training.
- The repeating RNN model structure is very simple whereby each has only a single layer (e.g. tanh).

- Selected applications
 - Sequence labeling
 - Sequence prediction tasks
 - E.g. handwriting recognition
 - E.g. language modeling

- Loops / cyclic connections
 - Enable to pass information ('delay') from one step to the next iteration
 - Remember ‘short-term’ data dependencies
Unrolled RNN

A RNN can be viewed as multiple copies of the same network, each passing a message to a successor – this gets clear when ‘unrolling the RNN loop’.

('delay')

(unroll the 'loop' over t timesteps)

(use backpropagation through time optimization approach)
Unrolled RNN – Role of ‘Delay’ and Nodes in Layers

- RNNs are unrolled programmatically during the training and prediction phase
- Idea of ‘delay’ means feeding back the output of a neural network layer at a specific time t to the input of the same neural network layer at time $t+1 \rightarrow$ establishes something like ‘short memory’
RNN Model – Simple Example – Predict Next Character

- Sequence values that are separated by a significant number of words (i.e. deep RNN) leads to the vanishing gradient problem (cf. day one).

- Reasoning is that small gradients or weights with values than 1 are multiplied many times through the multiple time steps, i.e. gradients shrink asymptotically to zero.

- Effect is that weights of those earlier layers are not changed significantly and the network will not learn long-term dependencies.
Exercises – RNN Example
Use Different number of Hidden Nodes, Epochs & Iterations

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)
RNN Example – Dataset & Application

- **Unsupervised learning:** simple sequence prediction example
 - Generating text by building a language model out of given text
 - Domain of **Natural language processing (NLP)**
 - Language models enable the prediction of the **probability** of a word in a given text given its previous words
 - Higher level applications: **machine translation, spelling correction**, etc.

- **Data: Shakespeare text datasets**
 - E.g. Shakespeare Macbeth (text)
 - http://www.folgerdigitaltexts.org/download/
 - Already downloaded and available on JURECA
RNN Example – Dataset Exploration

- Use more/head/tail <textfile>
 - TBD: What challenges we see w.r.t. ‘clean datasets’ & analysis?

```
-bash-4.2$ head Mac.txt
Macbeth
by William Shakespeare
Edited by Barbara A. Mowat and Paul Werstine
  with Michael Poston and Rebecca Niles
Folger Shakespeare Library
http://www.folgerdigitaltexts.org/?chapter=5&play=Mac
Created on Jul 31, 2015, from FDT version 0.9.2

Characters in the Play
========================

-bash-4.2$ tail Mac.txt
That fled the snares of watchful tyranny,
Producing forth the cruel ministers
Of this dead butcher and his fiend-like queen
(Who, as ’tis thought, by self and violent hands,
Took off her life) this, and what needful else
That calls upon us, by the grace of grace,
We will perform in measure, time, and place.
So thanks to all at once and to each one,
Whom we invite to see us crowned at Scone.
[Flourish. All exit.]
```
RNN Example – Language Model Setup

Typical approach

- Create a 'generative model' to predict the next word given previous words
- Enables to generate text by sampling from the output probabilities

Simplified model for tutorial

- Reasoning: simpler model and quicker training
- Train a 'character based language model' on one text of Shakespeare
- Predict (only) the next character given 10 previous characters
- Use the trained language model to generate some text in the same style

Typical approach

- Create a 'generative model' to predict the next word given previous words
- Enables to generate text by sampling from the output probabilities

Simplified model for tutorial

- Reasoning: simpler model and quicker training
- Train a 'character based language model' on one text of Shakespeare
- Predict (only) the next character given 10 previous characters
- Use the trained language model to generate some text in the same style

Deep Learning with Keras
RNN Example – Keras Python Script – Preprocessing

```python
from __future__ import print_function
from keras.layers import Dense, Activation
from keras.layers.recurrent import SimpleRNN
from keras.models import Sequential
import numpy as np

# preprocessing of input text data
fin = open("/home/hpclab/train001/data/macbeth/Mac.txt", 'rb')
lines = []
for line in fin:
    line = line.strip().lower()
    line = line.decode("ascii", "ignore")
    if len(line) == 0:
        continue
    lines.append(line)
fin.close()
text = " ".join(lines)

# lookup tables char vs index of chars
chars = set([c for c in text])
nb_chars = len(chars)
char2index = dict((c, i) for i, c in enumerate(chars))
index2char = dict((i, c) for i, c in enumerate(chars))
```

- Import necessary modules, e.g. SimpleRNN for a simple RNN cell, or Dense for a fully connected layer
- Preprocessing of original files that e.g. contain line breaks, non-ASCII characters, capital characters; Result is variable text with ‘cleaned text’
- Create lookup tables for characters per index & vice versa

Character-level RNN: vocabulary is the set of characters that occur in the text → use index of character instead of a character itself

[8] Deep Learning with Keras
RNN Example – Keras Python Script – Input & Label Texts

Task: Predict (only) the next character given 10 previous characters → SEQLEN = 10, STEP=1

Moving step-wise through text by STEP=1 number of characters & extract span of text with size SEQLEN=10

Each row of input to the RNN corresponds to one of the input texts

SEQLEN characters input; vocabulary size = nb_chars (set of different characters in text) → one-hot encoded vector of size (nb_chars)

[8] Deep Learning with Keras
RNN Example – Modelling & Decisions

RNN model

x_t

h_t

RNN model

h_{t-1}

x_{t-1}

RNN model

h_{t-2}

x_{t-2}

RNN model

h_{t-3}

x_{t-3}

... RNN model

h_0

x_0

RNN model

h_1

x_1

(unroll the ‘loop’ over t timesteps)

(input: one-hot encoded vector of size nb_chars)

(output/label: one-hot encoded vector of size nb_chars)

(internal decision normalizes the emitted scores to probabilities usually via softmax)

(good loss function for categorical output → categorical cross-entropy loss function)

(each row in input is 2D tensor SEQLEN x nb_chars)

(input: SEQLEN)

(good loss function for categorical output)

→ categorical cross-entropy loss function

(softmax)

(categorical cross-entropy loss function)
Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)

Hyperparameter:
- HIDDEN_SIZE = 128
- BATCH SIZE = 128
- NUM ITERATIONS = 25
- NUM_EPOCHS_PER_ITERATION = 1
- NUM_PREFS_PER_EPOCH = 100

Sequential model:
- Adding first a SimpleRNN layer of size 128, return_sequences = False means single character as output/label not a ‘sequence of characters’, input tensor is SEQLEN x nb_chars; unroll = True - performance
- Adding a Dense layer of size nb_chars & activation function ‘softmax’ (emits scores for each of the characters in vocabulary → probabilities)
- Use optimizer ‘rmsprop’ with ‘categorical_crossentropy’ loss function

Keras Python Script – Model & Parameter

```python
# hyperparameter
HIDDEN_SIZE = 128
BATCH_SIZE = 128
NUM_ITERATIONS = 25
NUM_EPOCHS_PER_ITERATION = 1
NUM_PREFS_PER_EPOCH = 100

# RNN model
model = Sequential()
model.add(SimpleRNN(HIDDEN_SIZE, return_sequences=False, input_shape=(SEQLEN, nb_chars), unroll=True))
model.add(Dense(nb_chars))
model.add(Activation("softmax"))
model.compile(loss="categorical_crossentropy", optimizer="rmsprop")
```
RNN Example – Keras Model & Activation Functions

(input layer nodes)

(Dense layer with ‘number of characters’ as nodes + ‘softmax’ activation function as output layer nodes)

(SimpleRNN layer with 128 hidden nodes with default hyperbolic tangent as activation function, i.e. values squashed between 1 and -1)

(Internal decision normalizes the emitted scores to probabilities usually via softmax)
RNN Example – Keras Python Script – Training Process

```python
# training process
for iteration in range(NUM_ITERATIONS):
    print("=" * 50)
    print("Iteration #: %d" % (iteration))
    model.fit(X, y, batch_size=BATCH_SIZE, epochs=NUM_EPOCHS_PER_ITERATION)

    test_idx = np.random.randint(len(input_chars))
    test_chars = input_chars[test_idx]
    print("Generating From seed: %s" % (test_chars))
    print(test_chars, end="")
    for i in range(NUM_PRED_PER_EPOCH):
        Xtest = np.zeros((1, SEQLEN, nb_chars))
        for i, ch in enumerate(test_chars):
            Xtest[0, i, char2index[ch]] = 1
        pred = model.predict(Xtest, verbose=0)[0]
        ypred = index2char[np.argmax(pred)]
        print(ypred, end="")
        # move forward with test_chars + ypred
        test_chars = test_chars[1:] + ypred
    print()
```

- Train model for epochs = 1 since no labelled dataset and then testing; training for 25 iterations → NUM_ITERATIONS; aka training for 25 epochs/iterations
- Test: generate a character from model given a random input; dropping the first character from the input & append the predicted character from our previous run & generate another character (100 x)

Cf. supervised learning process (day one)
- Labels existing (not in this unsupervised example)
- Train model for fixed number of epochs
- Evaluate model against test dataset

[8] Deep Learning with Keras
RNN Example – Copy Keras Script & Job Script

- Create directory ‘rnn’
- cp /homea/hpclab/train001/tools/rnn/rnn-example.py ~/rnn

- cp /homea/hpclab/train001/scripts/submit_train_simple_rnn.sh ~/rnn
RNN Example – Submit Script

- Job submit script
 - Specify good name for the job
 - Allocate GPUs for deep learning job
 - Specify job queue
 - Restore module environment with all dependencies
 - Use python with rnn-example.py script

- Use sbatch
 - Use jobscript

```bash
#!/bin/bash
#SBATCH--nodes=1
#SBATCH--ntasks=1
#SBATCH--output=rnn_out.%j
#SBATCH--error=rnn_err.%j
#SBATCH--time=01:00:00
#SBATCH--mail-user=m.riedel@fz-juelich.de
#SBATCH--mail-type=ALL
#SBATCH--job-name=simple-RNN
#SBATCH--partition=gpus
#SBATCH--gres=gpu:1
#SBATCH--reservation=deep_learning

### location executable
KERAS_SCRIPT=/homea/hpclab/train001/tools/rnn/rnn-example.py

module restore dl_tutorial

### submit python $KERAS_SCRIPT
```
RNN Example – Output Interpretation

- Challenge: unsupervised learning problem
 - Check output with ‘more out.txt’
 - Idea: string gives us an indication of the quality of the model
 - More epochs/iterations → better quality of the model

(learned well to spell compared to first iteration but no coherent thoughts → still interesting since no word concept)
RNN Topologies – Many-to-many (1)

- RNN topologies express RNN capabilities to be arranged in many ways to solve specific problems
- Recall: RNNs combine the input data vector with the previous state vector to produce new states
- Common RNN topologies for sequences are driven by application problems but can be categorized roughly as follows: (a) many-to-many (1); (b) many-to-many (2); (c) one-to-many; (d) many-to-one

(a) many-to-many (1)
- All input sequences are of the same length
- Output is produced at each time step

Example
- RNN-Example above: Predicting next character
RNN Topologies – Many-to-many (2)

- (b) many-to-many (2)
 - Output / input data: Sequence-to-sequence network
 - Example: machine translation network
 - Input: sequence of English words
 - Output: sequence of translated Spanish sentence
 - Example: Part-of-Speech (POS) tagging
 - Input: words in a sentence
 - Output: corresponding POS tags

[9] O. Vinyals et al., ‘Grammar as a Foreign Language’
RNN Topologies – One-to-many

- (c) one-to-many
 - E.g. different type of inputs combined with different types of outputs in a network

- Example: Image captioning network
 - Input: image
 - Output: sequence of words describing the image

RNN Topologies – Many-to-one

- (d) many-to-one
 - Summarize or judge a sequence of words & texts to a specific outcome
 - Often binary outcomes (good/negative)

- Example: Sentiment analysis of sentences
 - Input: Sequence of words (e.g. ratings, reviews, etc.)
 - Output: Positive/negative sentiment about input

Exercises – RNN Example – Revisit Group Outputs
[Video] RNN Summary

[12] RNNs, YouTube
Long Short-Term Memory
Deep Learning Architectures

- **Deep Neural Network (DNN)**
 - ‘Shallow ANN’ approach with many hidden layers between input/output

- **Convolutional Neural Network (CNN, sometimes ConvNet)**
 - Connectivity pattern between neurons is like animal visual cortex

- **Deep Belief Network (DBN)**
 - Composed of multiple layers of variables; only connections between layers

- **Recurrent Neural Network (RNN) → Long Short-Term Memory**
 - RNN with state and temporal behaviour; LSTM adds ‘strong memory’

Deep Learning architectures can be classified into Deep Neural Networks, Convolutional Neural Networks, Deep Belief Networks, and Recurrent Neural Networks all with unique characteristics.

Deep Learning needs ‘big data’ to work well & for high accuracy – works not well on sparse data.
Different Useful LSTM Models

- **Standard LSTM**
 - Memory cells with single LSTM layer; used in simple network structures

- **Stacked LSTM**
 - LSTM layers are stacked one on top of another; creating deep networks

- **CNN LSTM**
 - CNNs to learn features (e.g. images); LSTM for image sequences

- **Encoder-Decoder LSTM**
 - One LSTM network → encode input; one LSTM network → decode output

- **Bidirectional LSTM**
 - Input sequences are presented and learned both forward & backwards

- **Generative LSTM**
 - LSTMs learn the inherent structure relationship in input sequences; then generate new plausible sequences
Long Short-Term Memory (LSTM) Models

- Specific type of Recurrent Neural Network (RNN)
 - Different to techniques like standard Artificial Neural Networks (ANNs) or Convolutional Neural Networks (CNNs)
 - Solving certain limits of ANNs through RNNs design
 - RNNs offer short-term memory – LSTMs add ‘long-term‘ capabilities
 - Idea: improved performance through ‘more memory‘ (cp. HPC?!)

- Designed specifically for sequence prediction problems
 - World-class results in complex problem domains & applications
 - E.g. language translation, automatic image captioning, text generation

Unrolled RNN – Revisited

- A RNN can be viewed as multiple copies of the same network, each passing a message to a successor – this gets clear when ‘unrolling the RNN loop’

(roll the ‘loop’ over t timesteps)

(use backpropagation through time optimization approach)

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)
Long Short Term Memory (LSTM) Model

- Long Short Term Memory (LSTM) networks are a special kind of Recurrent Neural Networks (RNNs)
- LSTMs learn long-term dependencies in data by remembering information for long periods of time
- The LSTM chain structure consists of four neural network layers interacting in a specific way

\[
\begin{align*}
 h_t &= f_t \cdot \tanh(\mathbf{W}_x \cdot x + \mathbf{W}_h \cdot h_{t-1}) + i_t \cdot \tanh(\mathbf{W}_x \cdot x + \mathbf{W}_h \cdot h_{t-1}) \\
 o_t &= \sigma(\mathbf{W}_x \cdot x + \mathbf{W}_h \cdot h_{t-1}) \\
 c_t &= \sigma(\mathbf{W}_c \cdot x + \mathbf{W}_h \cdot h_{t-1}) + f_t \cdot c_{t-1} \\
 h_{t+1} &= o_t \cdot \tanh(c_t)
\end{align*}
\]

(each line carries an entire vector)

(uses sigmoid \(\sigma \))
LSTM Model – Memory Cell & Cell State

- LSTM introduce a ‘memory cell’ structure into the underlying basic RNN architecture using four key elements: an input gate, a neuron with self-current connection, a forget gate, and an output gate.
- The data in the LSTM memory cell flows straight down the chain with some linear interactions (x,+).
- The cell state s_t can be different at each of the LSTM model steps & modified with gate structures.
- Linear interactions of the cell state are pointwise multiplication (x) and pointwise addition (+).
- In order to protect and control the cell state s_t, three different types of gates exist in the structure.
Computing of LSTM Cell – Step 1-2

1. New x_t input together with the output from cell h_{t-1} are squashed via a tanh layer
 - Outputs between -1 and 1

2. New x_t input together with the output from cell h_{t-1} is passed through the ‘input gate’
 - Layer of sigmoid activated nodes whose output is multiplied by squashed input

 $i = \sigma(b^i + x_tU^i + h_{t-1}V^i)$

 (gate sigmoid σ can act to ‘switch off’ any elements of the input vector that are not required)

 (sigmoid function outputs values between 0 and 1, weights connecting the input to these nodes can be trained to output values close to zero to ‘switch off’ certain input values – or outputs close to 1 to ‘pass through’)
Computing of LSTM Cell – Step 3

3. Internal state / forget gate

- LSTM cells have internal cell state s_t
- ‘Delay’ – lagged one time step: s_{t-1}
- Added to the input data to create an effective ‘layer of recurrence’
- Addition instead of ‘usual’ multiplication reduces risk of vanishing gradients
- The connection to cell state is carefully controlled by a forget gate with sigmoid (works like the input gate)

\[
\sigma = \sigma(b^f + x_t U^f + h_{t-1} V^f)
\]

(gate sigmoid σ can act to ‘switch off’ any elements of the cell state to steer what variables should be remembered or forgotten)
Computing of LSTM Cell – Step 4

4. Output layer & output gate

- Output layer with tanh squashing function

- Output is controlled via output gate with sigmoid activation function

(gate sigmoid σ can learn to determine which values are allowed as an output from the cell)
Theano is a low-level deep learning library implemented in Python with a focus on defining, optimizing, and evaluating mathematical expressions & multi-dimensional arrays. The Theano tool supports the use of GPUs and CPUs via expressions in NumPy syntax. Theano work with the high-level deep learning tool Keras in order to create models fast. LSTM models are created using mathematical equations but there is no direct class for it.

```python
import numpy
import theano
from theano import config
import theano.tensor as tensor

def lstm_layer(tparams, state_below, options, prefix='lstm', mask=None):
    i = tensor.nnet.sigmoid(_slice(preact, 0, options['dim_proj'])))
    f = tensor.nnet.sigmoid(_slice(preact, 1, options['dim_proj'])))
    o = tensor.nnet.sigmoid(_slice(preact, 2, options['dim_proj'])))
    c = tensor.tanh(_slice(preact, 3, options['dim_proj'])))
```

Tensorflow is an open source library for deep learning models using a flow graph approach. Tensorflow nodes model mathematical operations and graph edges between the nodes are so-called tensors (also known as multi-dimensional arrays). The Tensorflow tool supports the use of CPUs and GPUs (much more faster than CPUs). Tensorflow work with the high-level deep learning tool Keras in order to create models fast. LSTM models are created using tensors & graphs and there are LSTM package contributions.

```python
lstm = rnn_cell.BasicLSTMCell(lstm_size, state_is_tuple=False)
stacked_lstm = rnn_cell.MultiRNNCell([lstm] * number_of_layers, state_is_tuple=False)
initial_state = state = stacked_lstm.zero_state(batch_size, tf.float32)

for i in range(num_steps):
    # The value of state is updated
    # after processing each batch of words.
    output, state = stacked_lstm(words[:, i], state)

    # The rest of the code.
    # ...

final_state = s
```

The class `BasicLSTMCell()` offers a simple LSTM Cell implementation in Tensorflow.
High-level Tools – Keras

- Keras is a high-level deep learning library implemented in Python that works on top of existing other rather low-level deep learning frameworks like Tensorflow, CNTK, or Theano.
- The key idea behind the Keras tool is to enable faster experimentation with deep networks.
- Created deep learning models run seamlessly on CPU and GPU via low-level frameworks.

```python
keras.layers.LSTM(
    units,
    activation='tanh',
    recurrent_activation='hard_sigmoid',
    use_bias=True,
    kernel_initializer='glorot_uniform',
    recurrent_initializer='orthogonal',
    bias_initializer='zeros',
    unit_forget_bias=True,
    kernel_regularizer=None,
    recurrent_regularizer=None,
    bias_regularizer=None,
    activity_regularizer=None,
    kernel_constraint=None,
    recurrent_constraint=None,
    bias_constraint=None,
    dropout=0.0, ...
)
```

- Tool Keras supports the LSTM model via `keras.layers.LSTM()` that offers a wide variety of configuration options.
Exercises – LSTM Example
Use Different number of Hidden Nodes, Epochs & Iterations
LSTM Example – Data Repository

[13] Kaggle, UMICH SI650 – Sentiment Classification Data
LSTM Example – Dataset & Application

- Sentiment analysis (many-to-one RNN topology)
 - Input: sentence as sequence of words (i.e. movie ratings texts)
 - Output: Sentiment value (positive/negative movie rating)
 - Application was a former competition (i.e. Kaggle platform overall idea)
 - Goal: Create LSTM network that will learn to predict a correct sentiment

- Small dataset example for tutorial: training & test data available
 - Training samples: 7086 short sentences (labelled) [~440 KB]
 - Test samples: 33052 short sentences[~1.94 MB]
 - Format: label & tab seperated sentence
 - https://www.kaggle.com/c/si650winter11/data
LSTM Example – Dataset Exploration

- Create directory lstm
- Copy data
 - `cp /homea/hpclab/train001/data/sentiments/* ~/lstm`

(labelled training dataset)

(testing dataset)
LSTM Example – Keras Python Script – Preprocessing

```python
from keras.layers.core import Activation, Dense, Dropout, SpatialDropout1D
from keras.layers.embeddings import Embedding
from keras.layers.recurrent import LSTM
from keras.models import Sequential
from keras.preprocessing import sequence
from sklearn.model_selection import train_test_split
import collections
import matplotlib.pyplot as plt
import nltk
import numpy as np
import os

# obtain punkt if not there already
nltk.download('punkt')

# define a data directory
DATA_DIR = "~/home/hpclab/train001/data/sentiments"
```

- Location for labeled training data and testset data

- Natural Language Toolkit (NLTK) is for building Python programs working on human language datasets (punkt is tokenizer)

- Import necessary modules, e.g. LSTM for a simple LSTM cell, or Dense for a fully connected layer
- Import good sklearn model selection tools
- Import numpy for as helper tool

- [8] Deep Learning with Keras
LSTM Example – Keras Python Script – Vocabulary Setup

Perform exploratory analysis in order to find out the number of unique words in the whole corpus & how many words are roughly in each sentence

Exploration reveals maxlen: 42 & len(word_freqs): 2313

Number of words in sentence (maxlen) enables a fixed sequence length & PAD = 0; truncate long ones

Creating indices index2word and vice versa
Out of vocabulary means UNK (unknown)

[8] Deep Learning with Keras

Lecture 6 – Fundamentals of Long Short-Term Memory (LSTM)
LSTM Example – Keras Python Script – Indices & Padding

```python
# input sentence -> word index sequences
X = np.empty((num_rec, ), dtype=list)
y = np.zeros((num_rec, ))
i = 0
ftrain = open(os.path.join(DATA_DIR, "training.txt"), 'rb')
for line in ftrain:
    label, sentence = line.strip().split('\t')
    words = nltk.word_tokenize(sentence.decode("ascii", "ignore").lower())
    seqs = []
    for word in words:
        if word2index.has_key(word):
            seqs.append(word2index[word])
        else:
            seqs.append(word2index["UNK"])
    X[i] = seqs
    y[i] = int(label)
i += 1
ftrain.close()

# perform padding if needed
X = sequence.pad_sequences(X, maxlen=MAX_SENTENCE_LENGTH)

# split into training and testing
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=0.2, random_state=42)
```

- Convert input sentences from the training data to word index sequences and add unknown ones as UNK in index
- Perform padding to the maximum sentence length (40)
- Labels are binary (positive/negative sentiment) and do not need padding

8] Deep Learning with Keras

- Split between training & testing set (ratio rule of thumb 80:20)
- There is another test set put aside for nicely checking out-of-sample
LSTM Example – Modelling & Decisions

LSTM model

\[x_t \]

\[h_t \]

(unroll the ‘loop’ over \(t \) timesteps)

\[h_0 \]

\[x_0 \]

\[h_1 \]

\[x_1 \]

... (input for each row is a sequence of word indices – sequence length is given by MAX_SENTENCE_LENGTH)

(tensor layout: None \(\times \) MAX_SENTENCE_LENGTH \(\times \) 1)

(output of LSTM is the tensor
None \(\times \) HIDDEN_LAYER_SIZE, because last tensor can be defined as return_sequences = False \(\rightarrow \) we just need 0/1 output)

(Dense layer with Sigmoid activation function \(\rightarrow \)
0 – negative review / 1 positive review)

modified from [8] Deep Learning with Keras
LSTM Example – Keras Python Script – Model & Parameter

```python
# hyperparameter
EMBEDDING_SIZE = 128
HIDDEN_LAYER_SIZE = 64
BATCH_SIZE = 32
NUM_EPOCHS = 10

# LSTM model
model = Sequential()
model.add(Embedding(vocab_size, EMBEDDING_SIZE,
input_length=MAX_SENTENCE_LENGTH))
model.add(SpatialDropout1D(Dropout(0.2)))
model.add(LSTM(HIDDEN_LAYER_SIZE, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(1))
model.add(Activation("sigmoid"))
model.compile(loss="binary_crossentropy", optimizer="adam",
metrics=["accuracy"])
```

- Hyperparameters
 - embedding=128; hidden layers=64; parameter by experimentation
- Create first embedding layer with input tensor None X maximum sentence length X 1
- Add regularizer SpatialDropout1D
- Add LSTM cell with hidden layer size 64 with regularizers dropout and recurrent_dropout
- Add Dense layer and Sigmoid activation
- All hyperparameters are tuned experimentally over many runs
- Compile model using binary cross-entropy loss function good for a binary model used here
- Use of Adam optimizer as good general purpose optimizer

[8] Deep Learning with Keras
training
story = model.fit(Xtrain, ytrain, batch_size=BATCH_SIZE, epochs=NUM_EPOCHS, validation_data=(Xtest, ytest))

evaluation
score, acc = model.evaluate(Xtest, ytest, batch_size=BATCH_SIZE)
print("Test score: %.3f, accuracy: %.3f" % (score, acc))
for i in range(5):
 idx = np.random.randint(len(Xtest))
 xtest = Xtest[idx].reshape(1,40)
 ylabel = ytest[idx]
 ypred = model.predict(xtest)[0][0]
 sent = " ".join([index2word[x] for x in xtest[0].tolist() if x != 0])
 print("%.0f %dt %.5s" % (ypred, ylabel, sent))

- Train the LSTM network for 10 epochs (NUM_EPOCHS) & with batch size 32
- Perform validation at each epoch using test data

- Evaluate model against the full test set showing score and accuracy
- Show the LSTM prediction with pick of a few random sentences from the test set (predicted label, label & actual sentence)

- TBD (home work): Use model for prediction of the real ‘test-data’ (not splitted training)
 - Note: real ‘test-data’ has no labels, aka unseen data

Cf. supervised learning process (day one)
- Labels existing (not in this unsupervised example)
- Train model for fixed number of epochs
- Evaluate model against test dataset (splitted training)
RNN Example – Copy Keras Script & Job Script

- Create directory ‘lstm’
- `cp /homea/hpclab/train001/tools/lstm/lstm-example.py ~/lstm`
- `cp /homea/hpclab/train001/scripts/submit_train_simple_lstm.sh ~/lstm`
LSTM Example – Submit Script (JURECA)

- Job submit script
 - Specify good name for the job
 - Allocate GPUs for deep learning job
 - Specify job queue
 - Restore module environment with all dependencies
 - Use python with lstm-example.py script

- Use sbatch
 - Use job script

```bash
#!/bin/bash -x
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --output=lstm_out.%j
#SBATCH --error=lstm_err.%j
#SBATCH --time=01:00:00
#SBATCH --mail-user=m.riedel@fz-juelich.de
#SBATCH --mail-type=ALL
#SBATCH --job-name=simple-LSTM

#SBATCH -partition=gpus
#SBATCH --gres=gpu:1

#SBATCH --reservation=deep_learning

### location executable
KERASSCRIPT=/home/hpc/lab/train001/tools/lstm/lstm-example.py

module restore dl_tutorial

### submit
python $KERASSCRIPT
```
LSTM Example – Output Interpretation

- Supervised learning problem
 - Check output with ‘more out.txt’
 - Idea: predicted sentiment should be close to sentiment labels
 - More epochs/iterations → better quality of the model

Train on 5668 samples, validate on 1410 samples
Epoch 1/10

32/5668 [............................] - ETA: 35:08 - loss: 0.6938 - acc: 0.4668
64/5668 [.........................] - ETA: 17:36 - loss: 0.6927 - acc: 0.5312
96/5668 [.........................] - ETA: 11:45 - loss: 0.6911 - acc: 0.5625

Epoch 10/10

5664/5668 [------------------------] - ETA: 0s - loss: 0.0015 - acc: 0.9995
5668/5668 [------------------------] - 15s 3ms/step - loss: 0.0015 - acc: 0.9995 - val_loss: 0.0845 - val_acc: 0.9718

Test score: 0.072, accuracy: 0.980
1t 1t the people who are worth it know how much i love the da vinci code.
1t 1t anyway , thats why i love `` brokeback mountain .
0t 0t the da vinci code sucked .
0t 0t this quiz sucks and harry potter sucks ok bye .
1t 1t because i would like to make friends who like the same things i like,
LSTM Example – Model Evaluation

- Selected plots (e.g. for papers)
 - E.g. matplotlib & pyplot can be used to create simple graphs

![Accuracy and Loss Plots](image)

[8] Deep Learning with Keras
Different Useful LSTM Models – Many other Applications

- **Standard LSTM**
 - Memory cells with *single LSTM layer*; used in simple network structures

- **Stacked LSTM**
 - LSTM layers are stacked one on top of another; creating deep networks

- **CNN LSTM**
 - CNNs to learn features (e.g. images); LSTM for image sequences

- **Encoder-Decoder LSTM**
 - One LSTM network \rightarrow *encode input*; one LSTM network \rightarrow *decode output*

- **Bidirectional LSTM**
 - Input sequences are presented and *learned both forward & backwards*

- **Generative LSTM**
 - LSTMs *learn the inherent structure relationship* in input sequences; then *generate new plausible sequences*
Different Useful LSTM Models – Many other applications

- **Standard LSTM**

```python
from keras.models import Sequential
from keras.layers import Dense, LSTM
from keras.layers import Dropout

# design network
model = Sequential()
model.add(LSTM(units=config['units'],
               input_shape=(train_X.shape[1], train_X.shape[2]))
model.add(Dense(1, activation=config['activation']))
model.compile(loss=config['loss'], optimizer=config['optimizer'])

# fit network
print("Fitting model..")

history = model.fit(
    train_X,
    train_y,
    epochs=config['epochs'],
    batch_size=config['batchsize'],
    validation_data=(test_X, test_y),
    verbose=2,
    shuffle=config['shuffle'])
```

- LSTM models work quite well to predict power but needs to be trained and tuned for different power stations
- Observing that some peaks can not be ‘learned’
Different Useful LSTM Models – Stacked LSTMs

- E.g. predicting electricity consumption / customer
 - Stacked LSTM cells
 - Periodic elements can take advantage of state
 - Needs to be carefully tuned
 - Requires through use of state more computing

- E.g. damped sine wave prediction
 - Stacked LSTM cells since again periodic character
 - Depending on wave the pattern might be not able to be detected w/o LSTMs
Tensorflow – LSTM Google Translate Example & GPUs

- Use of 2 LSTM networks in a stacked manner
 - Called ‘sequence-2-sequence’ model
 - Encoder network
 - Decoder network
 - Needs context of sentence (memory) for translation
SOLUTION
Gating units - LSTM, GRU

[6] Recurrent Neural Networks, YouTube
Lecture Bibliography (1)

- [1] Keras Python Deep Learning Library, Online: https://keras.io/
- [3] LSTM Networks for Sentiment Analysis, Online: http://deeplearning.net/tutorial/lstm.html
- [6] YouTube Video, ‘Recurrent Neural Networks - Ep. 9 (Deep Learning SIMPLIFIED)’, Online: https://www.youtube.com/watch?v=_aCuOwF1ZjU&t=7s
 Lecture Bibliography (2)
