000860190 001__ 860190
000860190 005__ 20210131030857.0
000860190 0247_ $$2doi$$a10.21468/SciPostPhys.6.1.013
000860190 0247_ $$2Handle$$a2128/21454
000860190 0247_ $$2WOS$$aWOS:000457556500013
000860190 0247_ $$2altmetric$$aaltmetric:45267309
000860190 037__ $$aFZJ-2019-00974
000860190 082__ $$a530
000860190 1001_ $$0P:(DE-Juel1)151130$$aCatelani, Gianluigi$$b0$$eCorresponding author
000860190 245__ $$aNon-equilibrium quasiparticles in superconducting circuits: photons vs. phonons
000860190 260__ $$aAmsterdam$$bSciPost Foundation$$c2019
000860190 3367_ $$2DRIVER$$aarticle
000860190 3367_ $$2DataCite$$aOutput Types/Journal article
000860190 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1548842298_8840
000860190 3367_ $$2BibTeX$$aARTICLE
000860190 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860190 3367_ $$00$$2EndNote$$aJournal Article
000860190 520__ $$aWe study the effect of non-equilibrium quasiparticles on the operation of a superconducting device (a qubit or a resonator), including heating of the quasiparticles by the device operation. Focusing on the competition between heating via low-frequency photon absorption and cooling via photon and phonon emission, we obtain a remarkably simple non-thermal stationary solution of the kinetic equation for the quasiparticle distribution function. We estimate the influence of quasiparticles on relaxation and excitation rates for transmon qubits, and relate our findings to recent experiments.
000860190 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000860190 588__ $$aDataset connected to CrossRef
000860190 7001_ $$0P:(DE-HGF)0$$aBasko, Denis$$b1
000860190 773__ $$0PERI:(DE-600)2886659-9$$a10.21468/SciPostPhys.6.1.013$$p013$$tSciPost physics$$v6$$x2542-4653$$y2019
000860190 8564_ $$uhttps://juser.fz-juelich.de/record/860190/files/1807.07377.pdf$$yOpenAccess
000860190 8564_ $$uhttps://juser.fz-juelich.de/record/860190/files/SciPostPhys_6_1_013.pdf$$yOpenAccess
000860190 8564_ $$uhttps://juser.fz-juelich.de/record/860190/files/1807.07377.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000860190 8564_ $$uhttps://juser.fz-juelich.de/record/860190/files/SciPostPhys_6_1_013.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000860190 909CO $$ooai:juser.fz-juelich.de:860190$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000860190 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151130$$aForschungszentrum Jülich$$b0$$kFZJ
000860190 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000860190 9141_ $$y2019
000860190 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860190 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000860190 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000860190 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000860190 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000860190 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000860190 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Open peer review
000860190 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860190 920__ $$lyes
000860190 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x0
000860190 980__ $$ajournal
000860190 980__ $$aVDB
000860190 980__ $$aUNRESTRICTED
000860190 980__ $$aI:(DE-Juel1)PGI-11-20170113
000860190 9801_ $$aFullTexts