| Home > Publications database > Computational aspects underlying genome to phenome analysis in plants > print |
| 001 | 860200 | ||
| 005 | 20220930130206.0 | ||
| 024 | 7 | _ | |a 10.1111/tpj.14179 |2 doi |
| 024 | 7 | _ | |a 0960-7412 |2 ISSN |
| 024 | 7 | _ | |a 1365-313X |2 ISSN |
| 024 | 7 | _ | |a 2128/21522 |2 Handle |
| 024 | 7 | _ | |a pmid:30500991 |2 pmid |
| 024 | 7 | _ | |a WOS:000455506600013 |2 WOS |
| 024 | 7 | _ | |a altmetric:52154680 |2 altmetric |
| 037 | _ | _ | |a FZJ-2019-00984 |
| 082 | _ | _ | |a 580 |
| 100 | 1 | _ | |a Bolger, Anthony M. |0 P:(DE-HGF)0 |b 0 |
| 245 | _ | _ | |a Computational aspects underlying genome to phenome analysis in plants |
| 260 | _ | _ | |a Oxford [u.a.] |c 2019 |b Wiley-Blackwell |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1581001923_22021 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Recent advances in genomics technologies have greatly accelerated the progress in both fundamental plant science and applied breeding research. Concurrently, high‐throughput plant phenotyping is becoming widely adopted in the plant community, promising to alleviate the phenotypic bottleneck. While these technological breakthroughs are significantly accelerating quantitative trait locus (QTL) and causal gene identification, challenges to enable even more sophisticated analyses remain. In particular, care needs to be taken to standardize, describe and conduct experiments robustly while relying on plant physiology expertise. In this article, we review the state of the art regarding genome assembly and the future potential of pangenomics in plant research. We also describe the necessity of standardizing and describing phenotypic studies using the Minimum Information About a Plant Phenotyping Experiment (MIAPPE) standard to enable the reuse and integration of phenotypic data. In addition, we show how deep phenotypic data might yield novel trait−trait correlations and review how to link phenotypic data to genomic data. Finally, we provide perspectives on the golden future of machine learning and their potential in linking phenotypes to genomic features. |
| 536 | _ | _ | |a 582 - Plant Science (POF3-582) |0 G:(DE-HGF)POF3-582 |c POF3-582 |f POF III |x 0 |
| 536 | _ | _ | |a 583 - Innovative Synergisms (POF3-583) |0 G:(DE-HGF)POF3-583 |c POF3-583 |f POF III |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Poorter, Hendrik |0 P:(DE-Juel1)129384 |b 1 |u fzj |
| 700 | 1 | _ | |a Dumschott, Kathryn |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Bolger, Marie |0 P:(DE-Juel1)162335 |b 3 |
| 700 | 1 | _ | |a Arend, Daniel |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Osorio, Sonia |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Gundlach, Heidrun |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Mayer, Klaus F. X. |0 P:(DE-HGF)0 |b 7 |
| 700 | 1 | _ | |a Lange, Matthias |0 P:(DE-HGF)0 |b 8 |
| 700 | 1 | _ | |a Scholz, Uwe |0 P:(DE-HGF)0 |b 9 |
| 700 | 1 | _ | |a Usadel, Björn |0 P:(DE-Juel1)145719 |b 10 |e Corresponding author |u fzj |
| 773 | _ | _ | |a 10.1111/tpj.14179 |g Vol. 97, no. 1, p. 182 - 198 |0 PERI:(DE-600)2020961-7 |n 1 |p 182 - 198 |t The plant journal |v 97 |y 2019 |x 0960-7412 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/860200/files/AS_210341033119.pdf |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/860200/files/AS_210341033119.pdf?subformat=pdfa |x pdfa |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/860200/files/Bolger_et_al-2019-The_Plant_Journal.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/860200/files/Bolger_et_al-2019-The_Plant_Journal.pdf?subformat=pdfa |x pdfa |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:860200 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)129384 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)162335 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)145719 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Key Technologies for the Bioeconomy |1 G:(DE-HGF)POF3-580 |0 G:(DE-HGF)POF3-582 |2 G:(DE-HGF)POF3-500 |v Plant Science |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Key Technologies for the Bioeconomy |1 G:(DE-HGF)POF3-580 |0 G:(DE-HGF)POF3-583 |2 G:(DE-HGF)POF3-500 |v Innovative Synergisms |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 914 | 1 | _ | |y 2019 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PLANT J : 2017 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b PLANT J : 2017 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IBG-2-20101118 |k IBG-2 |l Pflanzenwissenschaften |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)IBG-2-20101118 |
| 980 | _ | _ | |a APC |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | 1 | _ | |a APC |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|