000860202 001__ 860202
000860202 005__ 20210130000450.0
000860202 0247_ $$2doi$$a10.1111/gcb.14541
000860202 0247_ $$2ISSN$$a1354-1013
000860202 0247_ $$2ISSN$$a1365-2486
000860202 0247_ $$2pmid$$apmid:30536492
000860202 0247_ $$2WOS$$aWOS:000459456700009
000860202 0247_ $$2altmetric$$aaltmetric:52519317
000860202 037__ $$aFZJ-2019-00986
000860202 041__ $$aEnglish
000860202 082__ $$a570
000860202 1001_ $$0P:(DE-HGF)0$$aDybzinski, Ray$$b0$$eCorresponding author
000860202 245__ $$aHow are nitrogen availability, fine‐root mass, and nitrogen uptake related empirically? Implications for models and theory
000860202 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2019
000860202 3367_ $$2DRIVER$$aarticle
000860202 3367_ $$2DataCite$$aOutput Types/Journal article
000860202 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1550844897_4116
000860202 3367_ $$2BibTeX$$aARTICLE
000860202 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860202 3367_ $$00$$2EndNote$$aJournal Article
000860202 520__ $$aUnderstanding the effects of global change in terrestrial communities requires an understanding of how limiting resources interact with plant traits to affect productivity. Here, we focus on nitrogen and ask whether plant community nitrogen uptake rate is determined (a) by nitrogen availability alone or (b) by the product of nitrogen availability and fine‐root mass. Surprisingly, this is not empirically resolved. We performed controlled microcosm experiments and reanalyzed published pot experiments and field data to determine the relationship between community‐level nitrogen uptake rate, nitrogen availability, and fine‐root mass for 46 unique combinations of species, nitrogen levels, and growing conditions. We found that plant community nitrogen uptake rate was unaffected by fine‐root mass in 63% of cases and saturated with fine‐root mass in 29% of cases (92% in total). In contrast, plant community nitrogen uptake rate was clearly affected by nitrogen availability. The results support the idea that although plants may over‐proliferate fine roots for individual‐level competition, it comes without an increase in community‐level nitrogen uptake. The results have implications for the mechanisms included in coupled carbon‐nitrogen terrestrial biosphere models (CN‐TBMs) and are consistent with CN‐TBMs that operate above the individual scale and omit fine‐root mass in equations of nitrogen uptake rate but inconsistent with the majority of CN‐TBMs, which operate above the individual scale and include fine‐root mass in equations of nitrogen uptake rate. For the much smaller number of CN‐TBMs that explicitly model individual‐based belowground competition for nitrogen, the results suggest that the relative (not absolute) fine‐root mass of competing individuals should be included in the equations that determine individual‐level nitrogen uptake rates. By providing empirical data to support the assumptions used in CN‐TBMs, we put their global climate change predictions on firmer ground.
000860202 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000860202 588__ $$aDataset connected to CrossRef
000860202 7001_ $$0P:(DE-HGF)0$$aKelvakis, Angelo$$b1
000860202 7001_ $$0P:(DE-HGF)0$$aMcCabe, John$$b2
000860202 7001_ $$0P:(DE-HGF)0$$aPanock, Samantha$$b3
000860202 7001_ $$0P:(DE-HGF)0$$aAnuchitlertchon, Kanyarak$$b4
000860202 7001_ $$0P:(DE-HGF)0$$aVasarhelyi, Leah$$b5
000860202 7001_ $$0P:(DE-HGF)0$$aLuke McCormack, M.$$b6
000860202 7001_ $$0P:(DE-HGF)0$$aMcNickle, Gordon G.$$b7
000860202 7001_ $$0P:(DE-Juel1)129384$$aPoorter, Hendrik$$b8$$ufzj
000860202 7001_ $$0P:(DE-HGF)0$$aTrinder, Clare$$b9
000860202 7001_ $$0P:(DE-HGF)0$$aFarrior, Caroline E.$$b10
000860202 773__ $$0PERI:(DE-600)2020313-5$$a10.1111/gcb.14541$$gp. gcb.14541$$n3$$p885-899$$tGlobal change biology$$v25$$x1365-2486$$y2019
000860202 8564_ $$uhttps://juser.fz-juelich.de/record/860202/files/Dybzinski_et_al-2019-Global_Change_Biology.pdf$$yRestricted
000860202 8564_ $$uhttps://juser.fz-juelich.de/record/860202/files/Dybzinski_et_al-2019-Global_Change_Biology.pdf?subformat=pdfa$$xpdfa$$yRestricted
000860202 909CO $$ooai:juser.fz-juelich.de:860202$$pVDB
000860202 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129384$$aForschungszentrum Jülich$$b8$$kFZJ
000860202 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000860202 9141_ $$y2019
000860202 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000860202 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGLOBAL CHANGE BIOL : 2017
000860202 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860202 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860202 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000860202 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860202 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860202 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860202 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860202 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860202 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860202 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000860202 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000860202 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000860202 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bGLOBAL CHANGE BIOL : 2017
000860202 920__ $$lno
000860202 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000860202 980__ $$ajournal
000860202 980__ $$aVDB
000860202 980__ $$aI:(DE-Juel1)IBG-2-20101118
000860202 980__ $$aUNRESTRICTED