000860222 001__ 860222
000860222 005__ 20210130000454.0
000860222 0247_ $$2doi$$a10.1002/adma.201801187
000860222 0247_ $$2ISSN$$a0935-9648
000860222 0247_ $$2ISSN$$a1521-4095
000860222 0247_ $$2pmid$$apmid:29957849
000860222 0247_ $$2WOS$$aWOS:000448786000004
000860222 0247_ $$2altmetric$$aaltmetric:54874805
000860222 037__ $$aFZJ-2019-01006
000860222 082__ $$a660
000860222 1001_ $$0P:(DE-HGF)0$$aMehonic, Adnan$$b0$$eCorresponding author
000860222 245__ $$aSilicon Oxide (SiO x ): A Promising Material for Resistance Switching?
000860222 260__ $$aWeinheim$$bWiley-VCH$$c2018
000860222 3367_ $$2DRIVER$$aarticle
000860222 3367_ $$2DataCite$$aOutput Types/Journal article
000860222 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1548858083_26602
000860222 3367_ $$2BibTeX$$aARTICLE
000860222 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860222 3367_ $$00$$2EndNote$$aJournal Article
000860222 520__ $$aInterest in resistance switching is currently growing apace. The promise of novel high‐density, low‐power, high‐speed nonvolatile memory devices is appealing enough, but beyond that there are exciting future possibilities for applications in hardware acceleration for machine learning and artificial intelligence, and for neuromorphic computing. A very wide range of material systems exhibit resistance switching, a number of which—primarily transition metal oxides—are currently being investigated as complementary metal–oxide–semiconductor (CMOS)‐compatible technologies. Here, the case is made for silicon oxide, perhaps the most CMOS‐compatible dielectric, yet one that has had comparatively little attention as a resistance‐switching material. Herein, a taxonomy of switching mechanisms in silicon oxide is presented, and the current state of the art in modeling, understanding fundamental switching mechanisms, and exciting device applications is summarized. In conclusion, silicon oxide is an excellent choice for resistance‐switching technologies, offering a number of compelling advantages over competing material systems.
000860222 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000860222 588__ $$aDataset connected to CrossRef
000860222 7001_ $$0P:(DE-HGF)0$$aShluger, Alexander L.$$b1
000860222 7001_ $$0P:(DE-HGF)0$$aGao, David$$b2
000860222 7001_ $$0P:(DE-Juel1)131014$$aValov, Ilia$$b3
000860222 7001_ $$0P:(DE-HGF)0$$aMiranda, Enrique$$b4
000860222 7001_ $$0P:(DE-HGF)0$$aIelmini, Daniele$$b5
000860222 7001_ $$0P:(DE-HGF)0$$aBricalli, Alessandro$$b6
000860222 7001_ $$0P:(DE-HGF)0$$aAmbrosi, Elia$$b7
000860222 7001_ $$0P:(DE-HGF)0$$aLi, Can$$b8
000860222 7001_ $$0P:(DE-HGF)0$$aYang, J. Joshua$$b9
000860222 7001_ $$0P:(DE-HGF)0$$aXia, Qiangfei$$b10
000860222 7001_ $$00000-0003-2249-2184$$aKenyon, Anthony J.$$b11$$eCorresponding author
000860222 773__ $$0PERI:(DE-600)1474949-x$$a10.1002/adma.201801187$$gVol. 30, no. 43, p. 1801187 -$$n43$$p1801187 -$$tAdvanced materials$$v30$$x0935-9648$$y2018
000860222 8564_ $$uhttps://juser.fz-juelich.de/record/860222/files/Mehonic_et_al-2018-Advanced_Materials.pdf$$yRestricted
000860222 8564_ $$uhttps://juser.fz-juelich.de/record/860222/files/Mehonic_et_al-2018-Advanced_Materials.pdf?subformat=pdfa$$xpdfa$$yRestricted
000860222 909CO $$ooai:juser.fz-juelich.de:860222$$pVDB
000860222 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131014$$aForschungszentrum Jülich$$b3$$kFZJ
000860222 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000860222 9141_ $$y2018
000860222 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000860222 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860222 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000860222 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER : 2017
000860222 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860222 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860222 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860222 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860222 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860222 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860222 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000860222 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bADV MATER : 2017
000860222 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000860222 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000860222 980__ $$ajournal
000860222 980__ $$aVDB
000860222 980__ $$aI:(DE-Juel1)PGI-7-20110106
000860222 980__ $$aI:(DE-82)080009_20140620
000860222 980__ $$aUNRESTRICTED