Hauptseite > Publikationsdatenbank > Silicon Oxide (SiO x ): A Promising Material for Resistance Switching? > print |
001 | 860222 | ||
005 | 20210130000454.0 | ||
024 | 7 | _ | |a 10.1002/adma.201801187 |2 doi |
024 | 7 | _ | |a 0935-9648 |2 ISSN |
024 | 7 | _ | |a 1521-4095 |2 ISSN |
024 | 7 | _ | |a pmid:29957849 |2 pmid |
024 | 7 | _ | |a WOS:000448786000004 |2 WOS |
024 | 7 | _ | |a altmetric:54874805 |2 altmetric |
037 | _ | _ | |a FZJ-2019-01006 |
082 | _ | _ | |a 660 |
100 | 1 | _ | |a Mehonic, Adnan |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Silicon Oxide (SiO x ): A Promising Material for Resistance Switching? |
260 | _ | _ | |a Weinheim |c 2018 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1548858083_26602 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Interest in resistance switching is currently growing apace. The promise of novel high‐density, low‐power, high‐speed nonvolatile memory devices is appealing enough, but beyond that there are exciting future possibilities for applications in hardware acceleration for machine learning and artificial intelligence, and for neuromorphic computing. A very wide range of material systems exhibit resistance switching, a number of which—primarily transition metal oxides—are currently being investigated as complementary metal–oxide–semiconductor (CMOS)‐compatible technologies. Here, the case is made for silicon oxide, perhaps the most CMOS‐compatible dielectric, yet one that has had comparatively little attention as a resistance‐switching material. Herein, a taxonomy of switching mechanisms in silicon oxide is presented, and the current state of the art in modeling, understanding fundamental switching mechanisms, and exciting device applications is summarized. In conclusion, silicon oxide is an excellent choice for resistance‐switching technologies, offering a number of compelling advantages over competing material systems. |
536 | _ | _ | |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521) |0 G:(DE-HGF)POF3-521 |c POF3-521 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Shluger, Alexander L. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Gao, David |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Valov, Ilia |0 P:(DE-Juel1)131014 |b 3 |
700 | 1 | _ | |a Miranda, Enrique |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Ielmini, Daniele |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Bricalli, Alessandro |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Ambrosi, Elia |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Li, Can |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Yang, J. Joshua |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Xia, Qiangfei |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Kenyon, Anthony J. |0 0000-0003-2249-2184 |b 11 |e Corresponding author |
773 | _ | _ | |a 10.1002/adma.201801187 |g Vol. 30, no. 43, p. 1801187 - |0 PERI:(DE-600)1474949-x |n 43 |p 1801187 - |t Advanced materials |v 30 |y 2018 |x 0935-9648 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/860222/files/Mehonic_et_al-2018-Advanced_Materials.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/860222/files/Mehonic_et_al-2018-Advanced_Materials.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:860222 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)131014 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-521 |2 G:(DE-HGF)POF3-500 |v Controlling Electron Charge-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2018 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ADV MATER : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |a IF >= 20 |0 StatID:(DE-HGF)9920 |2 StatID |b ADV MATER : 2017 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-7-20110106 |k PGI-7 |l Elektronische Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-7-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|