001     860222
005     20210130000454.0
024 7 _ |a 10.1002/adma.201801187
|2 doi
024 7 _ |a 0935-9648
|2 ISSN
024 7 _ |a 1521-4095
|2 ISSN
024 7 _ |a pmid:29957849
|2 pmid
024 7 _ |a WOS:000448786000004
|2 WOS
024 7 _ |a altmetric:54874805
|2 altmetric
037 _ _ |a FZJ-2019-01006
082 _ _ |a 660
100 1 _ |a Mehonic, Adnan
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Silicon Oxide (SiO x ): A Promising Material for Resistance Switching?
260 _ _ |a Weinheim
|c 2018
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1548858083_26602
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Interest in resistance switching is currently growing apace. The promise of novel high‐density, low‐power, high‐speed nonvolatile memory devices is appealing enough, but beyond that there are exciting future possibilities for applications in hardware acceleration for machine learning and artificial intelligence, and for neuromorphic computing. A very wide range of material systems exhibit resistance switching, a number of which—primarily transition metal oxides—are currently being investigated as complementary metal–oxide–semiconductor (CMOS)‐compatible technologies. Here, the case is made for silicon oxide, perhaps the most CMOS‐compatible dielectric, yet one that has had comparatively little attention as a resistance‐switching material. Herein, a taxonomy of switching mechanisms in silicon oxide is presented, and the current state of the art in modeling, understanding fundamental switching mechanisms, and exciting device applications is summarized. In conclusion, silicon oxide is an excellent choice for resistance‐switching technologies, offering a number of compelling advantages over competing material systems.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Shluger, Alexander L.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Gao, David
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Valov, Ilia
|0 P:(DE-Juel1)131014
|b 3
700 1 _ |a Miranda, Enrique
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ielmini, Daniele
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Bricalli, Alessandro
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Ambrosi, Elia
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Li, Can
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Yang, J. Joshua
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Xia, Qiangfei
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Kenyon, Anthony J.
|0 0000-0003-2249-2184
|b 11
|e Corresponding author
773 _ _ |a 10.1002/adma.201801187
|g Vol. 30, no. 43, p. 1801187 -
|0 PERI:(DE-600)1474949-x
|n 43
|p 1801187 -
|t Advanced materials
|v 30
|y 2018
|x 0935-9648
856 4 _ |u https://juser.fz-juelich.de/record/860222/files/Mehonic_et_al-2018-Advanced_Materials.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/860222/files/Mehonic_et_al-2018-Advanced_Materials.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:860222
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131014
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV MATER : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 20
|0 StatID:(DE-HGF)9920
|2 StatID
|b ADV MATER : 2017
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21