000860226 001__ 860226
000860226 005__ 20210130000454.0
000860226 0247_ $$2doi$$a10.1021/acs.nanolett.8b01914
000860226 0247_ $$2ISSN$$a1530-6984
000860226 0247_ $$2ISSN$$a1530-6992
000860226 0247_ $$2pmid$$apmid:29965777
000860226 0247_ $$2WOS$$aWOS:000441478300061
000860226 0247_ $$2altmetric$$aaltmetric:44982863
000860226 037__ $$aFZJ-2019-01010
000860226 082__ $$a660
000860226 1001_ $$0P:(DE-HGF)0$$aZhang, Qiubo$$b0
000860226 245__ $$aSpring-Like Pseudoelectroelasticity of Monocrystalline Cu 2 S Nanowire
000860226 260__ $$aWashington, DC$$bACS Publ.$$c2018
000860226 3367_ $$2DRIVER$$aarticle
000860226 3367_ $$2DataCite$$aOutput Types/Journal article
000860226 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1548857101_25674
000860226 3367_ $$2BibTeX$$aARTICLE
000860226 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860226 3367_ $$00$$2EndNote$$aJournal Article
000860226 520__ $$aPrediction from the dual-phase nature of superionic conductors—both solid and liquid-like—is that mobile ions in the material may experience reversible extraction–reinsertion by an external electric field. However, this type of pseudoelectroelasticity has not been confirmed in situ, and no details on the microscopic mechanism are known. Here, we in situ monitor the pseudoelectroelasticity of monocrystalline Cu2S nanowires (NWs) using transmission electron microscopy (TEM). Specifically, we reveal the atomic scale details including phase transformation, migration and redox reactions of Cu+ ions, nucleation, growth, as well as spontaneous shrinking of Cu protrusion. Caterpillar-diffusion-dominated deformation is confirmed by the high-resolution transmission electron microscopy (HRTEM) observation and ab initio calculation, which can be driven by either an external electric field or chemical potential difference. The observed spring-like behavior was creatively adopted for electric nanoactuators. Our findings are crucial to elucidate the mechanism of pseudoelectroelasticity and could potentially stimulate in-depth research into electrochemical and nanoelectromechanical systems.
000860226 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000860226 588__ $$aDataset connected to CrossRef
000860226 7001_ $$0P:(DE-HGF)0$$aShi, Zhe$$b1
000860226 7001_ $$0P:(DE-HGF)0$$aYin, Kuibo$$b2
000860226 7001_ $$0P:(DE-HGF)0$$aDong, Hui$$b3
000860226 7001_ $$0P:(DE-HGF)0$$aXu, Feng$$b4
000860226 7001_ $$0P:(DE-HGF)0$$aPeng, Xinxing$$b5
000860226 7001_ $$0P:(DE-HGF)0$$aYu, Kaihao$$b6
000860226 7001_ $$0P:(DE-HGF)0$$aZhang, Hongtao$$b7
000860226 7001_ $$0P:(DE-HGF)0$$aChen, Chia-Chin$$b8
000860226 7001_ $$0P:(DE-Juel1)131014$$aValov, Ilia$$b9$$eCorresponding author
000860226 7001_ $$00000-0003-3813-4170$$aZheng, Haimei$$b10
000860226 7001_ $$00000-0002-2750-5004$$aSun, Litao$$b11
000860226 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.8b01914$$gVol. 18, no. 8, p. 5070 - 5077$$n8$$p5070 - 5077$$tNano letters$$v18$$x1530-6992$$y2018
000860226 909CO $$ooai:juser.fz-juelich.de:860226$$pVDB
000860226 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131014$$aForschungszentrum Jülich$$b9$$kFZJ
000860226 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000860226 9141_ $$y2018
000860226 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860226 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860226 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000860226 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2017
000860226 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860226 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860226 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860226 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860226 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860226 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860226 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860226 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2017
000860226 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000860226 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000860226 980__ $$ajournal
000860226 980__ $$aVDB
000860226 980__ $$aI:(DE-Juel1)PGI-7-20110106
000860226 980__ $$aI:(DE-82)080009_20140620
000860226 980__ $$aUNRESTRICTED