Home > Publications database > Spring-Like Pseudoelectroelasticity of Monocrystalline Cu 2 S Nanowire > print |
001 | 860226 | ||
005 | 20210130000454.0 | ||
024 | 7 | _ | |a 10.1021/acs.nanolett.8b01914 |2 doi |
024 | 7 | _ | |a 1530-6984 |2 ISSN |
024 | 7 | _ | |a 1530-6992 |2 ISSN |
024 | 7 | _ | |a pmid:29965777 |2 pmid |
024 | 7 | _ | |a WOS:000441478300061 |2 WOS |
024 | 7 | _ | |a altmetric:44982863 |2 altmetric |
037 | _ | _ | |a FZJ-2019-01010 |
082 | _ | _ | |a 660 |
100 | 1 | _ | |a Zhang, Qiubo |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Spring-Like Pseudoelectroelasticity of Monocrystalline Cu 2 S Nanowire |
260 | _ | _ | |a Washington, DC |c 2018 |b ACS Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1548857101_25674 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Prediction from the dual-phase nature of superionic conductors—both solid and liquid-like—is that mobile ions in the material may experience reversible extraction–reinsertion by an external electric field. However, this type of pseudoelectroelasticity has not been confirmed in situ, and no details on the microscopic mechanism are known. Here, we in situ monitor the pseudoelectroelasticity of monocrystalline Cu2S nanowires (NWs) using transmission electron microscopy (TEM). Specifically, we reveal the atomic scale details including phase transformation, migration and redox reactions of Cu+ ions, nucleation, growth, as well as spontaneous shrinking of Cu protrusion. Caterpillar-diffusion-dominated deformation is confirmed by the high-resolution transmission electron microscopy (HRTEM) observation and ab initio calculation, which can be driven by either an external electric field or chemical potential difference. The observed spring-like behavior was creatively adopted for electric nanoactuators. Our findings are crucial to elucidate the mechanism of pseudoelectroelasticity and could potentially stimulate in-depth research into electrochemical and nanoelectromechanical systems. |
536 | _ | _ | |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521) |0 G:(DE-HGF)POF3-521 |c POF3-521 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Shi, Zhe |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Yin, Kuibo |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Dong, Hui |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Xu, Feng |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Peng, Xinxing |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Yu, Kaihao |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Zhang, Hongtao |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Chen, Chia-Chin |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Valov, Ilia |0 P:(DE-Juel1)131014 |b 9 |e Corresponding author |
700 | 1 | _ | |a Zheng, Haimei |0 0000-0003-3813-4170 |b 10 |
700 | 1 | _ | |a Sun, Litao |0 0000-0002-2750-5004 |b 11 |
773 | _ | _ | |a 10.1021/acs.nanolett.8b01914 |g Vol. 18, no. 8, p. 5070 - 5077 |0 PERI:(DE-600)2048866-X |n 8 |p 5070 - 5077 |t Nano letters |v 18 |y 2018 |x 1530-6992 |
909 | C | O | |o oai:juser.fz-juelich.de:860226 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)131014 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-521 |2 G:(DE-HGF)POF3-500 |v Controlling Electron Charge-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2018 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NANO LETT : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b NANO LETT : 2017 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-7-20110106 |k PGI-7 |l Elektronische Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-7-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|