000860242 001__ 860242
000860242 005__ 20240610115944.0
000860242 0247_ $$2doi$$a10.1038/s41598-018-36896-x
000860242 0247_ $$2Handle$$a2128/21485
000860242 0247_ $$2pmid$$apmid:30679578
000860242 0247_ $$2WOS$$aWOS:000456553400104
000860242 0247_ $$2altmetric$$aaltmetric:54565385
000860242 037__ $$aFZJ-2019-01026
000860242 041__ $$aEnglish
000860242 082__ $$a600
000860242 1001_ $$0P:(DE-Juel1)171956$$aHuang, Yunfei$$b0
000860242 245__ $$aTraction force microscopy with optimized regularization and automated Bayesian parameter selection for comparing cells
000860242 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2019
000860242 3367_ $$2DRIVER$$aarticle
000860242 3367_ $$2DataCite$$aOutput Types/Journal article
000860242 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1582018462_521
000860242 3367_ $$2BibTeX$$aARTICLE
000860242 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860242 3367_ $$00$$2EndNote$$aJournal Article
000860242 520__ $$aAdherent cells exert traction forces on to their environment which allows them to migrate, to maintain tissue integrity, and to form complex multicellular structures during developmental morphogenesis. Traction force microscopy (TFM) enables the measurement of traction forces on an elastic substrate and thereby provides quantitative information on cellular mechanics in a perturbation-free fashion. In TFM, traction is usually calculated via the solution of a linear system, which is complicated by undersampled input data, acquisition noise, and large condition numbers for some methods. Therefore, standard TFM algorithms either employ data filtering or regularization. However, these approaches require a manual selection of filter- or regularization parameters and consequently exhibit a substantial degree of subjectiveness. This shortcoming is particularly serious when cells in different conditions are to be compared because optimal noise suppression needs to be adapted for every situation, which invariably results in systematic errors. Here, we systematically test the performance of new methods from computer vision and Bayesian inference for solving the inverse problem in TFM. We compare two classical schemes, L1- and L2-regularization, with three previously untested schemes, namely Elastic Net regularization, Proximal Gradient Lasso, and Proximal Gradient Elastic Net. Overall, we find that Elastic Net regularization, which combines L1 and L2 regularization, outperforms all other methods with regard to accuracy of traction reconstruction. Next, we develop two methods, Bayesian L2 regularization and Advanced Bayesian L2 regularization, for automatic, optimal L2 regularization. Using artificial data and experimental data, we show that these methods enable robust reconstruction of traction without requiring a difficult selection of regularization parameters specifically for each data set. Thus, Bayesian methods can mitigate the considerable uncertainty inherent in comparing cellular tractions in different conditions.
000860242 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000860242 588__ $$aDataset connected to CrossRef
000860242 7001_ $$0P:(DE-HGF)0$$aSchell, Christoph$$b1
000860242 7001_ $$0P:(DE-HGF)0$$aHuber, Tobias B.$$b2
000860242 7001_ $$0P:(DE-Juel1)172801$$aŞimşek, Ahmet Nihat$$b3
000860242 7001_ $$0P:(DE-Juel1)128815$$aHersch, Nils$$b4
000860242 7001_ $$0P:(DE-Juel1)128833$$aMerkel, Rudolf$$b5
000860242 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b6
000860242 7001_ $$0P:(DE-Juel1)171489$$aSabass, Benedikt$$b7$$eCorresponding author
000860242 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-018-36896-x$$gVol. 9, no. 1, p. 539$$n1$$p539$$tScientific reports$$v9$$x2045-2322$$y2019
000860242 8564_ $$uhttps://juser.fz-juelich.de/record/860242/files/30036053060008571662INVOIC2676127718001%20%28002%29.pdf
000860242 8564_ $$uhttps://juser.fz-juelich.de/record/860242/files/30036053060008571662INVOIC2676127718001%20%28002%29.pdf?subformat=pdfa$$xpdfa
000860242 8564_ $$uhttps://juser.fz-juelich.de/record/860242/files/s41598-018-36896-x.pdf$$yOpenAccess
000860242 8564_ $$uhttps://juser.fz-juelich.de/record/860242/files/s41598-018-36896-x.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000860242 8767_ $$82676127718$$92018-11-28$$d2018-11-30$$eAPC$$jZahlung erfolgt$$pSREP-18-29955A$$zFZJ-2018-06856
000860242 909CO $$ooai:juser.fz-juelich.de:860242$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000860242 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171956$$aForschungszentrum Jülich$$b0$$kFZJ
000860242 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172801$$aForschungszentrum Jülich$$b3$$kFZJ
000860242 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128815$$aForschungszentrum Jülich$$b4$$kFZJ
000860242 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128833$$aForschungszentrum Jülich$$b5$$kFZJ
000860242 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich$$b6$$kFZJ
000860242 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171489$$aForschungszentrum Jülich$$b7$$kFZJ
000860242 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000860242 9141_ $$y2019
000860242 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860242 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000860242 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000860242 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860242 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000860242 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2017
000860242 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000860242 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000860242 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860242 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860242 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860242 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000860242 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000860242 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860242 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860242 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000860242 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860242 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000860242 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860242 920__ $$lyes
000860242 9201_ $$0I:(DE-Juel1)ICS-7-20110106$$kICS-7$$lBiomechanik$$x0
000860242 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik$$x1
000860242 9801_ $$aAPC
000860242 9801_ $$aFullTexts
000860242 980__ $$ajournal
000860242 980__ $$aVDB
000860242 980__ $$aI:(DE-Juel1)ICS-7-20110106
000860242 980__ $$aI:(DE-Juel1)ICS-2-20110106
000860242 980__ $$aAPC
000860242 980__ $$aUNRESTRICTED
000860242 981__ $$aI:(DE-Juel1)IBI-2-20200312
000860242 981__ $$aI:(DE-Juel1)IBI-5-20200312
000860242 981__ $$aI:(DE-Juel1)IAS-2-20090406