Hauptseite > Workflowsammlungen > Publikationsgebühren > Traction force microscopy with optimized regularization and automated Bayesian parameter selection for comparing cells > print |
001 | 860242 | ||
005 | 20240610115944.0 | ||
024 | 7 | _ | |a 10.1038/s41598-018-36896-x |2 doi |
024 | 7 | _ | |a 2128/21485 |2 Handle |
024 | 7 | _ | |a pmid:30679578 |2 pmid |
024 | 7 | _ | |a WOS:000456553400104 |2 WOS |
024 | 7 | _ | |a altmetric:54565385 |2 altmetric |
037 | _ | _ | |a FZJ-2019-01026 |
041 | _ | _ | |a English |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Huang, Yunfei |0 P:(DE-Juel1)171956 |b 0 |
245 | _ | _ | |a Traction force microscopy with optimized regularization and automated Bayesian parameter selection for comparing cells |
260 | _ | _ | |a [London] |c 2019 |b Macmillan Publishers Limited, part of Springer Nature |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1582018462_521 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Adherent cells exert traction forces on to their environment which allows them to migrate, to maintain tissue integrity, and to form complex multicellular structures during developmental morphogenesis. Traction force microscopy (TFM) enables the measurement of traction forces on an elastic substrate and thereby provides quantitative information on cellular mechanics in a perturbation-free fashion. In TFM, traction is usually calculated via the solution of a linear system, which is complicated by undersampled input data, acquisition noise, and large condition numbers for some methods. Therefore, standard TFM algorithms either employ data filtering or regularization. However, these approaches require a manual selection of filter- or regularization parameters and consequently exhibit a substantial degree of subjectiveness. This shortcoming is particularly serious when cells in different conditions are to be compared because optimal noise suppression needs to be adapted for every situation, which invariably results in systematic errors. Here, we systematically test the performance of new methods from computer vision and Bayesian inference for solving the inverse problem in TFM. We compare two classical schemes, L1- and L2-regularization, with three previously untested schemes, namely Elastic Net regularization, Proximal Gradient Lasso, and Proximal Gradient Elastic Net. Overall, we find that Elastic Net regularization, which combines L1 and L2 regularization, outperforms all other methods with regard to accuracy of traction reconstruction. Next, we develop two methods, Bayesian L2 regularization and Advanced Bayesian L2 regularization, for automatic, optimal L2 regularization. Using artificial data and experimental data, we show that these methods enable robust reconstruction of traction without requiring a difficult selection of regularization parameters specifically for each data set. Thus, Bayesian methods can mitigate the considerable uncertainty inherent in comparing cellular tractions in different conditions. |
536 | _ | _ | |a 552 - Engineering Cell Function (POF3-552) |0 G:(DE-HGF)POF3-552 |c POF3-552 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Schell, Christoph |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Huber, Tobias B. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Şimşek, Ahmet Nihat |0 P:(DE-Juel1)172801 |b 3 |
700 | 1 | _ | |a Hersch, Nils |0 P:(DE-Juel1)128815 |b 4 |
700 | 1 | _ | |a Merkel, Rudolf |0 P:(DE-Juel1)128833 |b 5 |
700 | 1 | _ | |a Gompper, Gerhard |0 P:(DE-Juel1)130665 |b 6 |
700 | 1 | _ | |a Sabass, Benedikt |0 P:(DE-Juel1)171489 |b 7 |e Corresponding author |
773 | _ | _ | |a 10.1038/s41598-018-36896-x |g Vol. 9, no. 1, p. 539 |0 PERI:(DE-600)2615211-3 |n 1 |p 539 |t Scientific reports |v 9 |y 2019 |x 2045-2322 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/860242/files/30036053060008571662INVOIC2676127718001%20%28002%29.pdf |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/860242/files/30036053060008571662INVOIC2676127718001%20%28002%29.pdf?subformat=pdfa |x pdfa |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/860242/files/s41598-018-36896-x.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/860242/files/s41598-018-36896-x.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:860242 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)171956 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)172801 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)128815 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)128833 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)130665 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)171489 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences |1 G:(DE-HGF)POF3-550 |0 G:(DE-HGF)POF3-552 |2 G:(DE-HGF)POF3-500 |v Engineering Cell Function |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SCI REP-UK : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ICS-7-20110106 |k ICS-7 |l Biomechanik |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)ICS-2-20110106 |k ICS-2 |l Theorie der Weichen Materie und Biophysik |x 1 |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)ICS-7-20110106 |
980 | _ | _ | |a I:(DE-Juel1)ICS-2-20110106 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IBI-2-20200312 |
981 | _ | _ | |a I:(DE-Juel1)IBI-5-20200312 |
981 | _ | _ | |a I:(DE-Juel1)IAS-2-20090406 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|