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Traction force microscopy with 
optimized regularization and 
automated Bayesian parameter 
selection for comparing cells
Yunfei Huang , Christoph Schell , Tobias B. Huber , Ahmet Nihat , Nils Hersch , 

Rudolf   , Gerhard Gompper  Sabass  

Adherent cells exert traction forces on to their environment which allows them to migrate, to maintain 

tissue integrity, and to form complex multicellular structures during developmental morphogenesis. 

Traction force microscopy (TFM) enables the measurement of traction forces on an elastic substrate 

and thereby provides quantitative information on cellular mechanics in a perturbation-free fashion. 

In TFM, traction is usually calculated via the solution of a linear system, which is complicated by 

undersampled input data, acquisition noise, and large condition numbers for some methods. Therefore, 

are to be compared because optimal noise suppression needs to be adapted for every situation, which 

invariably results in systematic errors. Here, we systematically test the performance of new methods 

from computer vision and Bayesian inference for solving the inverse problem in TFM. We compare 

Elastic Net regularization, Proximal Gradient Lasso, and Proximal Gradient Elastic Net. Overall, we 

methods with regard to accuracy of traction reconstruction. Next, we develop two methods, Bayesian 

set. Thus, Bayesian methods can mitigate the considerable uncertainty inherent in comparing cellular 

Mechanical forces between cells and their embedding matrix are essential for a variety of biological processes, 
ranging from migration of cells – including immune cells and cancer cells – to tissue maintenance and organ 
development, see1–7 for only a few of the many review articles on this topic. Many of the relevant processes occur 
on a micrometer, or sub-micrometer lengthscale, for instance in nascent cell adhesion sites, �lopodia, and bacte-
rial adhesion. To understand these processes’ mechanics and their biological control, reliable and accurate meth-
ods for measurement of cellular forces are required.

Traction force microscopy (TFM) is a versatile and perturbation-free method yielding a spatial image of the 
stress exerted by cells on relatively so� elastic gel substrates. �is method has its origins in pioneering work by 
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Harris et al.8, who employed �exible silicone substrates to investigate the mechanical forces that cells generate. 
Today, TFM has become a method that is routinely used in laboratories studying cell biology and so� matter 
physics around the world9–14. TFM requires three distinct procedures, illustrated in Fig. 1(a): (1) Cells are plated 
on an elastic substrate containing �ducial markers allowing to quantify gel deformation visually, for instance 
�uorescent beads or quantum dots15,16. �e deformations caused by adherent cells are recorded by taking images 
of the gel before and a�er removing the cell. (2) A discrete gel displacement �eld u is calculated by tracking the 
markers. �e most common techniques for tracking are particle tracking velocimetry (PTV) and particle image 
velocimetry (PIV). (3) Finally, the traction force �eld f is calculated from the displacement �eld u by making use 
of a mechanical model of the elastic substrate. A variety of methods exist for this purpose, including �nite element 
methods17–21, boundary element methods15,22,23 and methods operating in Fourier space11,21,23–25. Usually, calcu-
lation of traction from displacement requires either �ltering or regularization approaches to reduce the e�ect of 
noise. �e TFM methodology is limited by two common serious issues that introduce systematic errors. First, the 
resolution of the measured traction is usually not high enough to resolve processes at micrometer-sized cellular 
structures. Secondly, the most commonly used TFM algorithms require the user to choose a �lter or a regulariza-
tion parameter, which introduces a considerable degree of subjectivity regarding smoothness and magnitude of 
the resulting traction. In this article, we suggest methods for improving the state-of-the art with respect to these 
issues.

In the standard TFM approach it is assumed that the substrate is a homogeneous, isotropic, and linear elastic 
half-space. �e mechanical model relating a continuous displacement �eld Ui(x) to the traction force �eld Fj(x′) 
on a two-dimensional (x = (x1, x2)) surface of the gel is expressed as the integral equation26

∫ ∑ ′ ′ ′= −
Ω =

U G Fx x x x x( ) ( ) ( )d ,
(1)

i
j

ij j
1

2
2

where Ω denotes the whole surface of the substrate. �e integrand contains a Green’s function Gij(x) = (1 + ν)/
(πE)[(1 − ν)δij/r + νxixj/r

3], and E and ν represent Young’s modulus and Poisson’s ratio, respectively. We also write 
r 2 = |x|2 and δij is the Kronecker delta function. Calculation of the traction Fj requires inversion of Eq. (1). A very 
popular and practical approach is to solve Eq. (1) in Fourier space23,24,27. With this approach, the inversion is o�en 
directly feasible if noise in the displacement data has been �ltered prior to calculation of the traction. Optimal �l-
tering, however, requires input of a prior-de�ned �lter function that imposes a smoothness constraint on the cal-
culated traction. Moreover, spatial clustering of traction into sparse regions is not conserved when switching from 
real space to Fourier space. To take advantage of the sparsity of traction patterns for better reconstruction, one can 
solve Eq. (1) in real space. Here, the integral in Eq. (1) can be converted into a matrix product by discretizing the 

Figure 1. Schematic representation of a typical traction force microscopy (TFM) setup and di�erent 
reconstruction methods for TFM. (a) Cells are plated on a planar gel substrate containing �ducial markers. 
Tracking the markers allows to infer the deformations u in the surrounding of the cell. �ese deformations are 
linearly related to the cellular traction forces f. �e problem of calculating traction f from displacement u is 
associated with inverting an ill-conditioned matrix M. �is problem can be solved with di�erent reconstruction 
methods. (b) In this work, we test �ve regularization methods for traction reconstruction: L2 regularization 
(L2), L1 regularization (L1), EN regularization (EN), Proximal Gradient Lasso (PGL) and Proximal Gradient 
Elastic Net (PGEN). Furthermore, we develop two Bayesian approaches that do not have any free parameters, 
namely Bayesian L2 regularization (BL2) and Advanced Bayesian L2 regularization (ABL2).
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traction �eld Fj and interpolating it as a piecewise linear, continuous function using pyramidal shape functions 
h(x)23,28. We write the two-dimensional, discrete displacement �eld as a 2m × 1 vector u, where m is the number 
of discretization nodes. �e discrete traction �eld f is a 2n × 1 vector, where n is the number of nodes at which 
traction is prescribed. �en, Eq. (1) becomes

= +u Mf s, (2)

where we also explicitly included the linear acquisition noise s that is present in the experimental data. �e 
matrix M represents the coe�cients of a discretized integration. It can be calculated with di�erent techniques. 
�e required convolution of the Green’s function with the shape functions h(x) can be done by numerical inte-
gration23. However, the computational e�ort can be signi�cantly reduced by using the convolution theorem in 
Fourier space on regular grids28. In the Supplementary S1, we show how this method for fast calculation of M 
can be extended to irregularly spaced measurements with the help of the shi� theorem. Regardless of the way 
how M is calculated, the condition number of M is typically very large. �is means that even the smallest noise 
s leads to very large errors if a direct inversion of Eq. (2) is attempted. A further characteristic of TFM is that the 
experimental data is always undersampled, which introduces a large degree of uncertainty. �e challenge in trac-
tion force microscopy is to turn Eq. (2) into a well-posed problem, while providing a traction �eld f with correct 
magnitude at high spatial resolution. �e standard approaches employed in TFM are L1 or L2 regularization that 
penalize norms of the solution to render traction calculation a well-de�ned numerical problem.

Linear problems involving large, ill-conditioned matrices occur commonly throughout engineering and phys-
ics. A number of existing methods have not yet been employed in the context of TFM. For example, the elastic 
net regularization. Literally, the elastic net regularization behaves like a stretchable �shing net that retains “all the 
big �sh” while removing the small background signal29. An alternative are proximal gradient methods which usu-
ally operate in wavelet space and employ adaptive or non-adaptive thresholding of high spatial frequencies30,31. 
Proximal gradient methods are for instance used for reconstructing lost parts of an image32–34, for analysis of MRI 
data35, and for analysis of genomic data36,37. All regularization methods have the weakness that they require selec-
tion of one or more constant regularization parameters to allow discrimination of noise and signal.

Bayesian statistics provides one solution to this problem. From the Bayesian point of view, regularization 
parameters can be seen as random variables that are picked for every experimental sample from a prior distribu-
tion. �us, one infers the most probable value of the regularization parameters in a conceptually similar way as 
one infers the solution38. Such methods do not require the choice of a regularization parameter and are therefore 
potentially less prone to subjectiveness than the classical regularization. �e conceptual framework of employ-
ing hierarchical priors for data regularization has been exploited for a large number of di�erent applications, 
for instance in astrophysics39–41, machine learning42, mechanical structure monitoring43, face recognition44, and 
radar imagery45. Moreover, Bayesian methods have been used to infer stresses between cells in a monolayer46. 
�erefore, it is to be expected that Bayesian analysis can be of great use for traction force reconstruction.

In this work, we systematically compare a range of di�erent approaches for solving Eq. (2). Altogether, we 
study the performance of seven methods, illustrated as a schematic diagram in Fig. 1(b). First, we test vari-
ous regularization methods. Among these are the classical TFM methods, L1- and L2 regularization and previ-
ously untested methods from computer vision, namely Elastic Net (EN) regularization, Proximal Gradient Lasso 
(PGL), and Proximal Gradient Elastic Net (PGEN). We �nd that the new EN regularization scheme has a sub-
stantially improved accuracy as compared to previous approaches but requires considerable extra computational 
cost. Secondly, we seek to establish Bayesian models that can automatically perform an optimal regularization of 
the data. Initial tests indicate that di�erent freely available Bayesian hierarchical models are of little use for TFM 
since the large number of hidden variables, even when used with sparsity priors, does not enforce su�cient data 
faithfulness. Instead, we �nd that the simplest-possible Bayesian models with global priors yield robust results 
that can be interpreted as optimal L2 regularization. We study two variants of this algorithm: Bayesian L2 reg-
ularization (BL2), where the magnitude of the noise in the displacement data must be measured separately, and 
Advanced Bayesian L2 regularization (ABL2) which requires no extra input. We test the Bayesian methods using 
arti�cial data and real experimental data. Our results suggest that BL2 is not only very robust, but also superior 
to classical L2 regularization when measurement noise is large. Most importantly, BL2 automatically determines 
the degree of regularization, which removes subjectiveness from the result. �is advance is particularly relevant 
for in-detail comparison of cells in di�erent conditions, where the varying signal-to-noise ratio previously made 
an unambiguous comparison challenging.

Methods
Regularization. A common heuristic approach to solve Eq. (2) is regularization of the solution through 
additional constraints. Here, not only the residual of (u − Mf) is minimized in a least-squares sense, but the mag-
nitude of the solution is also penalized through its p-norm denoted by f

p
. �e trade-o� between minimization 

of the residual and minimization of the solution norm is determined by �xed regularization parameters, λ1 and 
λ2, leading to a minimization problem of the type

ˆ λ λ= − + + .f Mf u R f R fargmin[ ]
(3)f

2
2

1 1 1 2 2 2
2

�e two norms are explicitly written as = ∑ | |xx k k1
 and xx k k2

2 2= ∑ . R1 and R2 are functions that are to be 
de�ned, e.g., as the unit matrix I. Of the large number of existing regularization strategies, we will focus on the 
following:
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L2 regularization, employing an L2-norm with λ2 > 0 and λ1 = 0 to penalize traction magnitude through 
R2 = I is currently the most common technique used for TFM23,47,48. L2 regularization is also known as ridge 
regression or Tikhonov regularization49 and this method e�ciently produces a continuous and smooth recon-
structed traction �eld. �is approach conveys a high level of robustness for the inversion problem in real 
space and also in Fourier space. See supplementary information for our implementation in real space50.
L1 regularization, also called Lasso51, is realized through setting λ2 = 0, λ1 > 0, and R1 = I. With L1 regu-
larization, small values of the reconstructed signal are e�ciently set to zero. L1 regularization is therefore 
frequently used in the the �eld of compressive sensing (CS)52, where the underlying assumption is that the 
signal can be represented in a sparse form where all but a few components of the signal vanish. Recently, the 
technique has found use for TFM28,53–55 and it is appropriate for traction �elds containing few, sparsely located 
traction hotspots. In this case, it has been found that L1 regularization improves the ability to distinguish dif-
ferent traction hotspots. We employ the popular convex optimization solver CVX56,57, for our implementation 
of the L1 regularization, see Supplementary Information. Alternatively, an iterative reweighted least squares 
algorithm can be employed58–60, see Supplementary Information and Fig. S6.
�e elastic net regularization combines L1- and L2 regularization. Here, λ1 > 0 and λ2 > 0 and Eq. (3) is 
modi�ed by setting f → f/(1 + λ2)

29. �is regularization scheme is known to have a better accuracy compared 
to L1 and L2 regularization if the coe�cient matrix has many correlated entries. EN regularization is well 
established for a wide variety of applications, most notably the analysis of genetic data36,61–63, but has to date 
not been used for TFM. We employ the convex optimization solver CVX for our implementation, see supple-
mentary information56,57.
Proximal gradient methods are an alternative approach to the optimization problems arising from the 
non-di�erentiable target functions in L1 regularization (PGL) and the EN regularization (PGEN)30,64. Here, 
the penalty terms are chosen to be wavelet-transforms written as = ∑ 〈 Ψ〉R f f2 ,l l1  and R f f,l l2 = ∑ 〈 Ψ〉, 
where the Ψl constitute an orthonormal Wavelet basis65,66. �e optimization problem is solved through itera-
tive so� thresholding, where the regularization parameters control the threshold below which the wavelet-co-
e�cients are set to zero. Proximal gradient methods are widely applied for image inpainting, which is the 
process of reconstructing lost or deteriorated parts of images32,34,67–69. �erefore, these methods may be useful 
for TFM where traction images are reconstructed from undersampled displacement data. Details regarding 
our implementation is given in the supplementary information.

�ese schemes have in common that they require the choice of one or two regularization parameters. Selecting 
the optimal regularization parameters is o�en a non-trivial problem. For L2- and L1-regularization, one can use 
the so-called L-curve criterion50 to �nd regularization parameters that provide a tradeo� between minimization 
of residual from the inverse problem and the regularization penalty21,23,28,47,48,70. Usually, the regularization param-
eter is assumed to be located at the in�ection point of a curve described by the norm of the residual versus the 
norm of the solution in double-logarithmic axes. However, the L-curve criterion is of limited use for real data, 
since the in�ection point does not always exist. Alternatively, multiple in�ection points can appear, and the points 
are hard to localize precisely on the employed logarithmic scales. Moreover, the L-curve criterion does not behave 
consistently in the asymptotic limit of large system sizes or when the data is strongly corrupted by noise71,72. 
Hence, in practice, regularization parameters are o�en chosen by visual inspection of the resulting traction �eld. 
�is procedure lacks objectivity and signi�cantly biases any conclusions drawn from later analysis of the traction 
forces. Note that this problem is not speci�c to regularization, but the issue of distinguishing between noise and 
“real” signal appears generally with any type of method if the data is processed in any way to reduce noise.

Bayesian approaches for traction reconstruction. The discrete inverse problem u = Mf + s is of 
two-fold statistical nature. First, the cellular traction varies from measurement to measurement. �us, f is a 
sample drawn from a distribution of possible traction values which we denote by p(f|α) with an undetermined 
parameter α. �e function p(f|α) describes any prior knowledge about the distribution of traction. For reasons 
that will become clear below, we will assume that the prior distribution for the 2n × 1 vector f is a Gaussian

α
α

| =
−

p
E

Z
f

f
( )

exp[ ( )]
,

(4)

f

f

where Zf = (2π/α)n and Ef = fTf/2. Second, the acquisition noise s also presents a source of randomness. Typically, 
s is assumed to be drawn from a zero-mean Gaussian with unknown variance 1/β38,39,41,73. In the language of 
Bayesian statistics, the probability distribution p(u|f, β) is called the likelihood function and determines the 
probability to to measure a particular vector u given a traction vector f. Since the noise is Gaussian, the likelihood 
function is

β
β

| =
− |

p
E

Z
u f

u f
( , )

exp[ ( )]
,

(5)

u

u

where Eu(u|f) = (Mf − u)T(Mf − u)/2 and Zu = (2π/β)m. m is, as above, the number of two-dimensional displace-
ments. �e likelihood function p(u|f, β) describes a situation that is exactly the reverse of the experimental situa-
tion, where we are looking for the probability of having f given measurements u. �is situation is described by the 
posterior distribution p(f|u) and can be related to the likelihood via Bayes’ rule
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Here, the marginal likelihood p(u|α, β) is the overall probability of �nding the displacements u when the trac-
tion distributions are integrated out. �us, p(u|α, β) is also called evidence for the model with {α, β, u}.

Assuming that α and β are known constants, one can maximize the posterior probability P(f|u, α, β) with 
respect to f. �e resulting solution then satis�es β α= − +f Mf u fargmin [ ]

fMP 2
2

2
2 , which is exactly the for-

mula employed for L2 regularization, Eq. (3), if the parameters α and β are related to the L2 regularization param-
eter as λ = α/β74. �us, our choice of a Gaussian prior is justi�ed if we intend to perform an L2 regularization. 
Other popular choices for replacing Eq. (5) as prior are the Laplace distribution p f f( ) ( /2)exp( /2 )1θ θ θ| = − 75, 
and a product of a Gaussian and a Laplace distribution76. Using these priors, we would have found the formulas 
corresponding to L1 regularization and EN regularization, respectively. �us, regularization is equivalent to max-
imizing the posterior probability of a measurement assuming �xed, known parameters of the prior distributions.

However, α and β can also be treated as variables whose values can be determined by maximizing their prob-
ability p(α, β|u) = p(u|α, β)p(α, β)/p(u) ~ p(u|α, β), where we assume a uniform prior p(α, β) and we can omit 
the marginal probability p(u) since it plays no role for the optimization. To calculate the evidence p(u|α, β), we 
need to integrate out f in the posterior given in Eq. (6). Due to the Gaussian probabilities, the integration can be 
done analytically. For convenience, we expand the integrand around the most probable value fMP. On de�ning 

α β≡ +K E Ef f f( ) ( ) ( )f u  and its Hessian, A K f( )≡ ∇∇ , we expand as K(f) ≈ K(fMP) + (f − fMP)TA(f − fMP)/2. 
�us, the evidence becomes

p p p

K

u u f f f

f f

K f

( , ) ( , ) ( )d

exp[ ( )]d

exp[ ( )],
(7)

n

Z Z

n

Z Z
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f

A

2
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(2 ) (det )
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n

u f

1/2

u f

∫
∫

α β β α| = | |

= −

= −π −

which is an exact result. �e logarithm of the evidence is

p E E

n m m

u f f Alog ( , ) ( ) ( )
1

2
log(det )

log log log(2 ) (8)

f MP u MPα β α β

α β π

| = − − −

+ + − .

�e right hand side of this equation is a typical example for target functions employed in Bayesian analysis, for 
example in the context of data �tting38. For TFM, numerical calculation of log(detA) requires some care. We 
employ here a Cholesky decomposition of the positive matrix A = LLT yielding = =A LLlog(det ) log(det( ))T  
Π = ΣL L2log 2 log( )i ii i ii .

�e logarithmic evidence, Eq. (8), assumes a maximum at those parameters α̂ and β̂ that are most likely associated 
with the measurement u. �e implicit equations resulting from maximizing Eq. (8) read38 E n A2 2 Trf

MP 1α α= − −
ˆ ˆ  

and β α= − + −ˆ ˆE m n A2 2 2 Tru
1. Since fMP and A depend on α and β, these equations need to be solved numeri-

cally. Once α̂ and β̂ are determined, the optimal L2 regularization parameter follows as /λ α β=ˆ ˆ ˆ.
We employ two approaches for determining the numerical values of α and β. In the �rst approach, called 

Bayesian L2 regularization (BL2), we estimate the inverse noise variance β directly from the data calculating the 
variance of the measured displacements in spatial regions that are very far away from any cell. �us, in BL2 only α is 
determined through maximization of Eq. (8). In the second approach, termed advanced Bayesian L2 regularization 
(ABL2), we solve directly for α and β, which requires an increased computational e�ort. For both approaches, it is 
imperative to standardize the data to adjust its spread in di�erent dimensions. For a displacement vector u of length 
2m, we �rst subtract the mean uu u 1 m2= −  with u u m/(2 )i

m
i1

2= ∑ = . Next, we calculate the mean and standard 

deviation for all columns of the matrix M as M m M1/(2 )j i
m

ij1
2= ∑ =  and ( )M M m( ) /(2 1)j i

m
ij j1

2 2 1/2
ω = ∑ − −= . 

�us, we can de�ne a problem matrix where each column is normalized by its spread ω= −
∼
M M M( )/ij ij j j. �e 

standardized problem therefore reads u M fi ij j
=
∼

, which yields ω=f f /
i i i.

To quantitatively compare the performance of di�erent reconstruc-
tion methods, we require arti�cial data with exactly known traction force and displacements. �e process of 
generating this data is shown in Fig. 2(a,i–iv) and involves prescribing traction force magnitude and direction 
in distributed circular areas, analytical calculation of the resulting displacements23, sampling displacements 
at discrete positions and addition of noise. �e Supplementary Information S5 provides further details on the 
involved analytical calculations. �roughout the article, arti�cial test data is generated for gel substrates with a 
Young’s modulus of E = 10 kPa and a Poisson’s ratio of ν = 0.3. �e size of the image plane is arbitrary, but �xed 
to 25 µm × 25 µm and involves 9 or 15 circular traction spots. For these �xed geometries we vary the traction 
magnitude, density of displacements, and the noise level.

Evaluation metrics for assessing the quality of traction reconstruction. To evaluate the quality 
of the reconstructed traction, we introduce four di�erent error measures comparing reconstructed traction and 
known original traction. For this purpose, traction at every grid node is written as a two-dimensional vector 
t = {tx, ty}. Real traction and reconstructed traction are discriminated by superscripts as treal and trecon. �e error 
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measures are calculated by discriminating traction inside and outside of Ni circular traction patches in a test 
sample.

�e Deviation of Traction Magnitude at Adhesions (DTMA)23 is de�ned as

N

t t

t
DTMA

1 mean ( )

mean ( )
,

(9)i i

j j i j i

j j i

,
recon

2
,

real

2

,
real

2

∑=
−

where Ni is the number of circular traction patches and the index i runs over all patches. �e index j runs over 
all traction vectors in one patch. A DTMA of 0 represents a perfect average traction recovery and a negative 
or positive value implies underestimation or overestimation, respectively.
�e Deviation of Traction Magnitude in the Background (DTMB) is the normalized di�erence between the 
reconstructed and real traction magnitude outside the circular patches

Figure 2. Systematic tests illustrate substantial ambiguity in the choice of regularization parameters. (a) 
Schematic of the employed procedure to test the reconstruction methods. (a,i) Arti�cial traction pattern 
consisting of circular spots that uniformly exert a traction of 100 Pa. (a,ii) Analytical calculation of the gel 
displacements. (a,iii) �e displacement �eld is sampled at random positions representing measurements of 
motion of �ducial markers. (a,iv) Reconstruction of the traction. (b) Central formula summarizing di�erent 
regularization approaches. (c) Dependence of various error measures on the regularization parameters. (b,i)–
(b,v) Error measures de�ned in Eqns. (9–12) exhibit various extrema and turning points, making the de�nition 
of an optimal parameter challenging. Note that the minima of the errors do not correspond to values of 
regularization parameters suggested by the L-curve criterion (Green dotted lines vs. black dotted lines). DTMA: 
Deviation of traction magnitude at adhesion, DTMB: deviation of traction magnitude in background. (b,I)–
(b,V) Traction �elds calculated with regularization parameters that correspond to the error minima at the black 
dotted lines. Space bar: 5 µm.
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t
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mean ( )
,

(10)

k k k

N i j j i

recon
2
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2

1
,

real

2i

=
−

∑

where the index k runs over all traction vectors outside the patches. A DTMB with a magnitude much smaller 
than unity implies low background noise in the reconstructed traction.
�e Signal to Noise Ratio (SNR) for TFM

t

t
SNR

mean ( )

std ( ) (11)

N i j j i

k k

1
,

recon

2
recon

i
=

∑
.

measures the detectability of a real signal within a noisy background77. As before, the index k runs over all 
traction vectors outside the patches while j is the index of each traction vector in the patch i. �e value of the 
SNR runs from 0 to in�nity where a SNR that is much larger than unity indicates a good separation between 
traction and noise.
�e Deviation of the traction Maximum at Adhesions (DMA) measures how peak-values of the traction over- 
or underestimate the true value. �e quantity is de�ned as

∑=
−

N

t t

t
DMA

1 [max ( ) max ( )]

max ( )
,

(12)A i

j j i j j i

j j i

,
recon

2
,

real

2

,
real

2

where the maxima of traction magnitude are calculated for each traction patch separately through index j. �is 
error measure is particularly important since traction maxima are easy to extract from real experimental data. A 
DMA of 0 means that the local traction maxima in the reconstruction and in the original data are equal. Positive 
or negative values of the DMA indicate that the maximum of traction is overestimated or underestimated.

Experimental procedures. Primary murine podocytes were isolated and maintained by following pre-
viously published protocols78. In brief, mGFP positive podocytes were isolated from mTom/mGFP*Nphs2Cre 
reporter mice and subsequent FACS based puri�cation resulted in a primary podocyte culture of highest purity79. 
Mice were housed in a SPF facility with free access to chow and water, according to the NIH guide for the care 
and use of Laboratory animals as well as the German law for the welfare of animals (kept at 12 hour day/night 
cycle). All animal experiments were approved by local authorities (Regierungspraesidium Freiburg, Germany -  
G11/51). TFM substrates were prepared according to previously established protocols74. For all experiments, 
gels were prepared from 12% acrylamide and 0.15% Bis-acrylamide and contained �uorescent beads. Elastic 
properties of this gel are characterized by a Young’s modulus of ~49 kPa and we assumed a Poisson’s modulus 
of 0.47. �e gel surface was covered with the crosslinker Sulfo-SANPAH and Fibronectin solution was added. 
Crosslinking was enhanced by exposure of the gels to UV light for 5 minutes. A�er letting the reaction proceed 
for 12 hours, the gels were thoroughly washed with water and PBS. Subsequently, primary podocytes were seeded 
and cultivated for 12–16 hours. �en, coverslips were placed in �ow chambers and images of beads and cells were 
recorded on an inverted confocal microscope with a 63x objective. A�er recording images of a cell and of the 
beads below it, the cell was completely removed from the substrate by using a micromanipulator (Eppendorf). 
Subsequently, images of the �uorescent beads in the relaxed gel were recorded, yielding an unstressed reference 
state. Substrate deformations between the stressed state with cells and the unstressed reference state were quanti-
�ed using correlation-based tracking of the beads.

Embryonic rat heart muscle cells were obtained from pregnant rats (Wistar, Charles River, Sulzfeld) at 
18–19 days of gestation, details are published elsewhere80. Before decapitation, the pregnant rat was anesthe-
tized with CO2. A�erwards the rat embryos were taken and decapitated immediately (Animal testing license 
number 84-02.04.2015.A173, Landesamt fuer Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen, 
Duesseldorf, Germany). Cover slides were coated with approximately 70 µm thick silicone elastomer layer pro-
duced from a commercial two-component formulation (Sylgard 184, Dow Corning; mixing ratio 50:1 base to 
crosslinker by weight; cured overnight at 60 °C). �ese substrates contained �uorescent beads in their uppermost 
layer (FluoSpheres Crimson carboxylate-modi�ed beads; Invitrogen) and were coated with �bronectin before 
cell seeding. Details on sample preparation and cell culture are published elsewhere80. Calibration of sti�ness81 
yielded a Young’s modulus of 15 kPa and a Poisson’s ratio of 0.5. Live cell microscopy on spontaneously beating 
cardiac myocytes was performed and positions of �uorescent beads were determined by cross-correlation80,82.

Results
Manual selection of optimal regularization parameters is challenging. �e optimal regularization 
parameters λ1/2 in Eq. (3) are usually unknown. Classical methods for their choice are the L-curve criterion71,83 
or the generalized cross validation (GCV) for L2 regularization50,84. However, these two methods hardly ever 
produce the same parameter values and results can di�er substantially in the presence of noise, see Supporting 
Fig. S1. To illustrate the strong e�ect of regularization on traction reconstruction, we focus on arti�cial test 
data where the underlying traction pattern is known. Figure 2(a) illustrates the generation of arti�cial traction 
�elds consisting of circular patches each exerting 100 Pa. Figure 2(c) demonstrates how variation of the regu-
larization parameters a�ects the error of traction reconstruction with di�erent methods. Note that the errors 
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exhibit minima for intermediate values of the regularization parameters. For the methods shown in panels i, iv, 
v of Fig. 2(c) (L2 regularization, PGL, PGEN), minima occur in the positive error of the background traction 
DTMB. In contrast, L1 regularization shown in panel ii of Fig. 2(c) exhibits a maximum in the DTMA, indicating 
that the average traction magnitude is estimated reasonably accurately here.

�e occurrence of clear minima in the error measures suggests that the corresponding regularization param-
eter values produce a faithful traction reconstruction. Indeed, employing the values corresponding to the 
error minima yields traction �elds that visually compare well with the original data, see Fig. 2(a,d). Note that 
for L1 regularization, the reconstruction clearly overestimates the maximum traction locally. As shown in the 
Supplementary Fig. S2(b), the overestimation of the maximum quanti�ed by the DMA can only be reduced 
through ~10 fold reduction of λ1, which however leads to strong background traction and suppression of real 
traction, see also Fig. S6. While the minima of the error measures in Fig. 2(c) allow to determine a “best” regu-
larization for test data, the resulting regularization parameter values deviate from those suggested by the L-curve 
criterion, see green lines in Fig. 2(c). Moreover, the L-curves for these samples are complex and exhibit multi-
ple turning points, illustrating the di�culty in choosing the right regularization parameter in experiments, see 
Supporting Fig. S5.

The elastic net outperforms other regularization methods for traction reconstruction. To 
facilitate quantitative comparison of di�erent reconstruction methods, we employ arti�cial data consisting of 
15 circular traction spots with traction magnitude between 0 Pa and 250 Pa, see Fig. 3(a). Gaussian noise with a 
standard deviation given in percent of the maximal absolute value of the of true displacements is added. �e spots 
have a diameter of 2 µm and the mesh constant for traction reconstruction is 0.5 µm.

Results from di�erent regularization approaches are shown in Fig. 3(a). �e �gure illustrates that L2 regu-
larization can yield realistic estimates for the absolute magnitude of traction on the spots but produces a strong 
traction background which may render identi�cation of traction sites di�cult. �e opposite de�ciencies occur 
for results from L1 regularization. Here, the background is nicely suppressed, which can allow excellent resolu-
tion of very small traction spots. However, the peak tractions are signi�cantly overestimated, which can not be 
mitigated by increasing the regularization parameter, see the Supplementary Fig. S6. Note that the quality of L1 

Figure 3. �e elastic net (EN) outperforms other reconstruction methods in the presence of noise and 
when applied to undersampled data. (a) Arti�cial test data with uniform traction spots and 4% noise in the 
displacements. Traction maps in (ii–vi) result from usage of di�erent regularization methods. Space bar: 5 µm; 
displacements are sampled on average every 0.5 µm (b) Comparison of errors resulting from undersampled 
data. Undersampling is realized by reducing the number of displacement vectors m. (c) L-curves with chosen 
regularization parameters (gray boxes) for a data set containing 2% noise and m/n = 0.4. (d) Comparison of 
errors for the regularization parameters shown in (c). EN regularization shows a favorable tradeo� between 
error and background signal.
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regularization can be improved by using an Iterative Reweighted Least Squares algorithm and the solution from 
the L2 regularization as an initial guess, see Fig. S6 in the Supplemental Material. �e best results are obtained 
with the EN regularization which combines the advantages of L1- and L2-regularization. Here, we obtain a clean 
background combined with acceptable accuracy in the absolute traction magnitude on the circular patches. 
�e results from the proximal gradient methods PGL and PGEN qualitatively have a smooth appearance with a 
level of background traction that is between those of L2 and L1. Figure 3(b) quanti�es the described di�erences 
between the regularization methods through the error in traction magnitude on the traction spots (DTMA), 
the error in traction magnitude in the background (DTMB), signal to noise ratio (SNR), and error in maximum 
traction on the spots (DMA). �e Supplementary Fig. S9 contains additional plots of these quantities. We �nd 
that the reconstruction quality of traction and background improves with increasing number of displacement 
measurements m. Furthermore, EN regularization outperforms other regularization methods with regard to 
reconstruction accuracy of undersampled data (m/n < 1). However, the advantage of EN regularization comes at 
a signi�cantly increased computation time and memory requirement as shown in Table 1.

We 
next consider the performance of the two Bayesian methods, BL2 and ABL2, that allow automatic choice of the 
optimal L2 regularization parameter, as schematically shown in Fig. 4(a). Both methods select the optimal regu-
larization parameter by maximizing the logarithmic evidence, Eq. (8). As illustrated in Fig. 4(a), the regulariza-
tion parameter is here deduced from the parameters β and α, characterizing the distributions of measurement 
noise and traction respectively. We �rst employ the same test data as used for Fig. 3, containing 5% Gaussian noise 
in the displacements with β = 400 Pix−2.

With BL2, the log evidence exhibits a clear maximum in a one-dimensional space as seen in Fig. 4(c). 
Figure 4(d) shows the reconstructed traction employing the optimal parameter λ = .ˆ 76 75Pa /Pix2

2 2. Visual com-
parison of the color-coded traction magnitude in Fig. 4(b,d) clearly shows that the reconstructed traction has the 
correct range.

For ABL2, the evidence is a function of β and α as seen in Fig. 4(e). Numerical localization of the maximum 
yields α = . −

ˆ e3 06 4 Pa 2 and 394 Pix 2β̂ = − , which is very close to the known input value of β = 400 Pix−2. �e 
optimal regularization parameter in this case is thus λ α β= = ./ 77 66 Pa /Pix2

2 2ˆ ˆ ˆ , which agrees well with the 
estimate from BL2 (76.75 Pa2/Pix2). �e resulting traction map is is shown in Fig. 4(f) and is very similar to the 
traction map resulting from BL2 in Fig. 4(d). �us, BL2 and ABL2 yield consistent parameter estimates that pro-
duce traction reconstruction of good accuracy. See Supplementary Fig. S9 for a comparison of the Bayesian meth-
ods with non-Bayesian approaches.

As with other regularization approaches, quality of reconstruction strongly depends on the present noise. 
When the magnitude of the noise is comparable to the magnitude of the displacements caused by the traction 
(σ σ ≈/ 1n u ), little information can be recovered. For instance, the circular spots with weak traction labeled 1 and 
2 in Fig. 3(a) are almost impossible to detect in the presence of 5% noise but can be reconstructed in the noise-free 
case, see the Supplementary Fig. S7. To quantitatively assess the �delity of reconstruction with small traction 
forces, we employ a constant 5% but scale the tractions to mean values of (12 Pa, 16 Pa, 60 Pa, and 120 Pa). �e 
resulting relative strength of noise and displacements is quanti�ed through the ratio of standard deviations /n uσ σ , 
which is plotted against our reconstruction quality measures in Fig. 4(g). For comparison, results from manual 
selection of the regularization parameter using the L-curve criterion are also given. �e reconstruction qualities 
of BL2, ABL2 and L2 are similar when / 1n uσ σ  (high traction). However, BL2 and ABL2 have an improved 
signal to ratio SNR compared with the L-Curve approach when /n uσ σ  approaches unity, see (iii). �is is due to the 
di�culties with the L-curve criterion at high noise. �e logarithmic evidence function exhibits in all cases a clear 
maximum that enables robust and reliable choice of optimal parameters with BL2 and ABL2. In general, the 
results from BL2 are however more reliable since the optimization involves here only one parameter. Overall, the 
tests with arti�cial data show that these Bayesian methods containing few additional parameters to be determined 
from the data can resolve the ambiguity associated with manual choice of the regularization parameters over a 
wide range of signal strengths σ σ </ 1n u .

BL2 and ABL2 are based on the simplest structure of a Bayesian model with only one, global prior distri-
bution. One may hypothesize that more complex hierarchies of priors yield an improved traction estimate. For 
instance, it is possible to prescribe a position-dependent prior for sparse traction patterns through hierarchical 
Bayesian networks. Such methods require more advanced techniques for sampling of the probability distributions 
and optimization, such as variational techniques or Markov-chain Monte Carlo methods. We have tested three 
such algorithms that were originally developed for purposes other than TFM75,85–87. Results are shown in the 
supplementary information. However, the tested algorithms all produce highly overestimated, localized traction 
patterns that sensitively depend on noise. Such errors are likely due to the many free parameters of the models 

Reconstruction 
method Regularization Bayesian models

Name L2 L1 EN PGL PGEN BL2 ABL2

Simulation time 8 s 75 s 0.8 h 126 s 127 s 0.1 h 0.5 h

RAM requirement 350 MB 1.98 GB 3.87 GB 101 MB 107 MB 400 MB 400 MB

Table 1. Overview of the runtime and RAM requirement for each method. �e benchmark tests were 
conducted with a data set consisting of 1000 displacement measurements and a traction �eld consisting of 2500 
entries.
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that do not favor a faithful data reconstruction in spite of the sparsity constraints. �us, our tests suggests that 
these hierarchical network models are not suited for the inverse problem associated with TFM.

Test of methods with experimental data. To compare the performance of the di�erent methods for real 
cells, we employ primary mouse podocytes studied with a standard TFM setup. �e deformation �eld resulting 
from cellular traction is shown in Fig. 5(a). Using this displacement data, we �nd that the variance of the noise 
is ~0.01 pix2 = 103.4 nm2 in regions that are far away from the cell. �e maximum displacement is 0.52 µm. 
Figure 5(b–h) show reconstruction results using all methods discussed above. As for arti�cial data, we �nd here 
that the EN regularization results in a very clear background. �e traction magnitudes and shapes of the traction 
spots are similar to those resulting from regularization with the L2 method. For L1 regularization, traction local-
izes in sparse regions and has a signi�cantly higher value than for other methods. Proximal gradient methods 
produce smooth traction pro�les as expected from the use of the so� wavelet thresholding. �e magnitude of 
traction measured with PGL and PGEN is close to results of EN and L2.

Next, we considered the performance of the Bayesian methods. �e logarithmic evidence, Eq. (8), calculated 
with BL2 and ABL2 reveals pronounced maxima, allowing to robustly choose the optimal parameters for the 
experimental data. See also Supplementary Fig. S11. �e resulting values for λ̂2 are 30.4 Pa2/Pix2 and 24.4 Pa2/Pix2 
for BL2 and ABL2, respectively, and thus agree reasonably well with each other. For BL2, only a single maximum 
of the evidence was found in all our tests. For ABL2, we found that further extrema may occur at the boundary of 
the region of scanned parameters. Figure 5(e,h) show the traction �elds calculated with BL2 and ABL2. �ese 
traction �elds are visually very similar to the one obtained with standard L2 regularization. However, the L-curve 
criterion provides a much more uncertain estimate of a regularization parameter due to the di�culty of localizing 
it on a logarithmic scale, see Supplementary Fig. S12. Note that the regularization parameters obtained from the 
L-curve criterion can not be directly compared to the parameters resulting from the Bayesian methods due to 
standardization employed for the latter. Overall, the suggested Bayesian models can eliminate ambiguity in TFM 
by automatically providing a consistent parameter choice.

Figure 4. Bayesian L2 regularization (BL2) and Advanced Bayesian L2 regularization (ABL2) are robust 
methods for automatic, optimal regularization. (a) Schematic diagram of the procedure employed to infer λ̂2 in 
BL2 and ABL2. BL2 requires the variance of the displacement measurements 1/β that can be obtained by 
analyzing displacement noise far away from any cell. ABL2 estimates this noise strength directly from the data. 
(b) Arti�cial test data. For the shown results, 5% Gaussian noise is added to the displacements. Space bars: 5 µm. 
(c) For BL2, the optimal regularization parameter is located at the maximum of a one-dimensional plot of the 
evidence Eq. (8). (d) Reconstruction of traction force using BL2. (e) For ABL2, the optimal regularization 
parameter is located at the maximum of a two-dimensional plot of the data evidence vs. α and β. (f) 
Reconstruction of traction force using ABL2. (g,i)–(g,iv) Comparison of reconstruction accuracy for L2, BL2 
and ABL2. Di�erent levels of traction forces were applied to change the signal-to noise ratio. Here, σn is the 
standard deviation of the noise and uσ  is the standard deviation of the noise-free traction �eld. Note that BL2 
outperforms the other methods for high noise levels.
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Bayesian regularization enables consistent analysis of traction time sequences. TFM is fre-
quently employed to study dynamical aspects of cell mechanics. Examples include cell migration, cell division, 
or cytoskeletal reorganization in response to extracellular stimuli. Such processes are usually accompanied with 
a change in the traction distribution. As a result, the optimal regularization parameter varies among di�erent 
images in a time sequence of microscopy data. Additionally, the regularization parameter can also change if the 
degree of noise varies over time, which can be caused for example by stage dri� or photo bleaching. In such cases, 
it is very challenging to perform a consistent, frame-by frame analysis to determine the degree of regulariza-
tion with conventional methods. �us, one �xed parameter is commonly employed for the whole time sequence 
whereby precision and accuracy of traction reconstruction are sacri�ced.

To test whether our Bayesian methods can be useful in this situation, we employ TFM data with a spontane-
ously beating cardiac myocyte, see Fig. 6. Due to the large size of the cell, we focus on a region of interest shown 
in Fig. 6(a). �e analyzed time sequence corresponds to one cell contraction. Snapshots from frames 1, 4, and 6 
are shown for illustration. Figure 6(b) shows the overall norm of reconstructed traction where λ2 is either chosen 
according to the L-curve criterion, held at an intermediate, constant value, or automatically determined in BL2. 
�e overall traction magnitudes are similar in frames 2–6 where traction is high. Di�erences occur, however, in 
the low-traction regime, where BL2 systematically yields lower values of traction. We expect that the results from 
BL2 are more trustworthy in this regime since the L-curve criterion yields highly ambiguous values for the regu-
larization parameters, see Supplementary Fig. S13. Figure 6(c) shows the overall norm of the gel displacement and 
the optimal regularization parameter estimated with BL2. �e noise variance is small, ~0.00003 pix2, in regions 
that are far away from the cell (pixel size 0.2 µm). As expected, λBL2 is inversely correlated with the displacement 
magnitude.

Figure 6e shows snapshots of the resulting traction �elds that illustrate again that BL2 produces slightly dif-
ferent results for low traction, most apparent in Fig. 6(e)i,I and (f),i. Note that the traction �eld resulting from 
classical L2 regularization in Fig. 6(e),i,I shows a noise background outside of the cell that is almost comparable to 
the real cellular traction. In contrast, BL2 suppresses this background at the price of an apparently reduced spatial 
resolution as seen in Fig. 6(f),i. However, this provides an objective distinction between real signal and noise, 
which is what is to be expected from a faithful data reconstruction.

Figure 5. Test of all reconstruction methods using experimental data. (a) Image of an adherent podocyte 
with substrate displacements shown as green vectors. (b–h) Reconstructed traction forces using L2, L1, EN, 
BL2, PGL, PGEN and ABL2, respectively. Reconstruction with L2-type regularization exhibits a comparatively 
high background noise. L1-regulation shows very high, localized traction. Based on tests with arti�cial data, 
we expect that these peaks overestimate the traction. �e EN method combines the advantages of L1 and L2 
regularization, namely a clean background and localized traction of reasonable magnitude. PGL and PGEN 
have smooth traction forces at adhesion and background. (g,h) �e Bayesian methods BL2 and ABL2 yield 
very similar results as the standard L2 regularization without requiring a search for the optimal regularization 
parameters. For better visibility, only every fourth traction vector is shown. Space bar: 25 µm.
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Discussion
During the last decade, traction force microscopy has become one of the most popular techniques for study-
ing mechanobiology on the cellular level. �e technique has found broad use for studying sub-cellular struc-
tures70,88–91, single cell dynamics92–95, and collective cellular behavior96–101 and there are far too many applications 
to be reviewed here appropriately.

Many, if not all, TFM methods critically rely on some form of noise reduction. Usually, traction is calculated 
from substrate displacement through the solution of a linear problem involving elastic Green’s functions. Here, 
the e�ects of noise are not a technical issue relating to the data precision, but connected directly to the structure 
of the linear problem where even the slightest numerical noise can be ampli�ed to an extent that the true solution 
is entirely lost. �e most immediate approach to deal with noise is to �lter the displacement �eld prior to traction 
reconstruction. Filtering becomes possible if the solution is calculated in Fourier space because the convolution 
theorem simpli�es the matrix inversion24. However, �ltering the input data generally reduces the spatial resolu-
tion and optimal resolution can only be gained if the �lter is adapted for each sample. In certain cases, moreover, 
data �ltering is not su�cient to guarantee stability of the solution, for example, if the three-dimensional position 
of displacements is included.

Figure 6. Bayesian L2 regularization robustly adapts to di�erent traction levels allowing quantitative analysis of 
time series. (a) Image of a spontaneously beating heart muscle cell on an elastic, micropatterned substrate. (b) 
Overall norm of traction magitude in successive image frames. �e maximum corresponds to one contraction 
of the heart muscle cell. Traction is calculated with BL2 or, for comparison, via L2 regularization where λ2 is 
either selected manually for every frame using the L-curve criterion or held constant throughout the image 
sequence. (c) Optimal regularization parameter suggested by BL2 and the norm displacement �eld correlate. 
(d,i)–(d,iii) Cell images with displacement �eld at frames 1, 4, and 6. (e,i)–(e,iii) Snapshots of the traction �elds 
resulting from L2 regularization with a manually chosen parameter λL-curve and a constant parameter λL-const. in 
an intermediate range. (f,i)–(f,iii) Snapshots of the traction �elds resulting from BL2. Note the di�erent scaling 
of displacement and tractions for the di�erent frames. Frame 1 (I) illustrates that BL2 yields a smaller traction 
magnitude than L2 in the presence of large noise, where the L-curve criterion is hard to employ. As a result, BL2 
allows to di�erentiate real traction from noise outside of the cell. For better visibility, only every fourth traction 
vector is shown.
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A popular alternative strategy for enforcing well-behaved solutions is regularization. With regularization, 
Fourier-space inversion becomes more robust21,23. However, regularization is also used for real-space approaches 
and has been used in conjunction with �nite element methods or boundary element methods. Solving the linear 
problem in real space is generally more demanding, but has the advantage that the spatial sparsity of traction pat-
terns is conserved. For TFM, two regularization methods have to date been used, namely L2 regularization23,74,77 
and L1 regularization28,54,55. �ese methods each have one regularization parameter that is chosen manually based 
on heuristics, which introduces a considerable degree of subjectivity in the resulting traction.

In this work, we systematically compare the classical L1- and L2 regularization to three other methods that 
have, to our knowledge, not yet been employed for TFM. �ese three regularization methods are the Elastic Net 
(EN), Proximal Gradient Lasso (PGL) and Proximal Gradient Elastic Net (PGEN). Our tests with arti�cial data 
clearly demonstrate that EN regularization outperforms other regularization methods with regard to the recon-
struction quality. Here, accurate traction reconstruction is due to a simultaneous suppression of background 
noise and penalization of large traction magnitude. In contrast, the proximal gradient methods PGL and PGEN 
are e�ective at producing a smoothed traction �eld, due to the local removal of high-frequency spatial variations. 
�ese results obtained with arti�cial data agree qualitatively with results from tests with experimental data. Here 
too, L1 and L2 regularization yield overestimated or underestimated traction on adhesion sites. EN again yields 
a clear background without producing excessively sharp traction peaks at adhesions, see Fig. 5. PGL and PGEN 
yield smooth traction �elds and rounded adhesion site contours. While our work presents a comprehensive over-
view of regularization variants in TFM, it does not cover all variants and solution procedures. For example, an 
Iterative Reweighted Least Squares algorithm for L1 regularization outperforms in our experience the L1 regu-
larization method studied here, see Supplementary Material. Also, it has been suggested to use an L1 norm for 
both the residual and regularization term55, and various other iterative regularization procedures can be tested 
for TFM in the future.

Next, we ask if Bayesian methods can eliminate the necessity of a manual choice of regularization parameters. 
Here, the corresponding parameter values are inferred by maximizing their evidence given a �xed class of chosen 
probability distributions. Using the simplest approach, our prior assumption on the traction forces is that they are 
drawn from one global Gaussian distribution with an unknown variance 1/α. �e posterior distribution deter-
mining the probability of a particular traction �eld given a measured displacement �eld is then determined by the 
parameter 1/α and a further parameter 1/β, quantifying the variance of the measurement noise. For �xed values 
of α and β, maximization of the posterior distribution corresponds exactly to L2 regularization with λ2 given by 
α/β. However, the values of α and β can also be determined through maximizing their probability conditioned 
on a given measurement and the chosen probability distributions. Here, this is equivalent to maximizing the 
evidence for u, given any two parameter values. We refer to the simultaneous determination of both parameters 
from the evidence as advanced Bayesian L2 regularization (ABL2). In an even simpler approach, we estimate the 
noise strength directly from the displacement data, leaving only one parameter α to be determined by maximiza-
tion of the evidence; which we call Bayesian L2 regularization (BL2). �ese methods represent an automatic 
optimization of the L2 regularization. �us the resulting traction �eld has all the qualitative features of L2 regu-
larization, including the suppression of exceedingly high traction values and a visible background traction. For all 
our tests, we found that BL2 was a robust method yielding reasonable estimates for traction and regularization 
parameters. Due to the di�culty in choosing the correct regularization parameter manually, BL2 has substantial 
advantages over the classical L2 procedure, in particular if the traction is so small that the resulting displacements 
are comparable to the noise σ σ ≈/ 1n u .

We mention that we have also tested more elaborate hierarchical Bayesian network algorithms that were orig-
inally designed for other purposes than for use with TFM. �ese include a variational approach termed “Bayesian 
compressive sensing using Laplace priors” (BCSL)75, and Markov chain Monte Carlo methods, for instance the 
“Bayesian Lasso”87. In our experience, however, none of these methods could compete with the much simpler 
Bayesian L2 regularization when applied to TFM problems, see Figs S8–S10 and S14 in the Supplementary 
Information.

�e advantage of employing Bayesian traction reconstruction is most apparent when cells in di�erent con-
ditions are to be compared. To perform a correct comparison of situations with di�erent traction, di�erent sub-
strate rigidities, etc., it is technically necessary to adapt the regularization parameter for each case. However, the 
di�culty of �nding the corresponding parameters usually makes this impossible, which introduces signi�cant 
quantitative errors. Bayesian methods present a possible solution to this problem. We have shown here that BL2 
produces a regularization that adapts smoothly and robustly to changes of cellular traction. �us, we expect that 
this method can be of wide use for quantitative studies of cell physiology.
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