000860244 001__ 860244
000860244 005__ 20240712113054.0
000860244 0247_ $$2doi$$a10.1016/j.electacta.2018.07.181
000860244 0247_ $$2ISSN$$a0013-4686
000860244 0247_ $$2ISSN$$a1873-3859
000860244 0247_ $$2WOS$$aWOS:000442485100073
000860244 037__ $$aFZJ-2019-01028
000860244 082__ $$a540
000860244 1001_ $$0P:(DE-HGF)0$$aHeckmann, A.$$b0
000860244 245__ $$aA route towards understanding the kinetic processes of bis(trifluoromethanesulfonyl) imide anion intercalation into graphite for dual-ion batteries
000860244 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2018
000860244 3367_ $$2DRIVER$$aarticle
000860244 3367_ $$2DataCite$$aOutput Types/Journal article
000860244 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552997421_14319
000860244 3367_ $$2BibTeX$$aARTICLE
000860244 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860244 3367_ $$00$$2EndNote$$aJournal Article
000860244 520__ $$aEven though lithium ion batteries are the state-of-the-art battery technology for numerous applications, there is extensive research on alternative battery technologies. Dual-ion batteries (DIBs) and in particular their all carbon/graphite versions, the dual-carbon (DCBs) and dual-graphite batteries (DGBs), have emerged as an upcoming and alternative approach for stationary energy storage systems. However, there are still fundamental electrochemical processes during charge and discharge operation of DIBs not fully understood so far. In this work, the kinetic processes during bis(trifluoromethanesulfonyl) imide (TFSI) anion intercalation into graphitic carbon, that proceeds by stage formation, are discussed in detail. The computational calculation of structural parameters of TFSI-graphite intercalation compounds (TFSI-GICs) indicates a possible maximum specific capacity of 140 mAh g⁻¹ and a walking-like diffusion of the TFSI anion within the graphite lattice. Moreover, a particular focus is set on understanding the overpotential generation during the charge process and its correlation to different specific capacities for varying graphite particle sizes and operating temperatures. In this context, a mechanism, supported by electrochemical and computational experiments, is proposed explaining the overpotential evolution on the basis of (apparent) anion diffusion coefficients in graphite. Temporarily higher (apparent) diffusion activation energies close to filled stages seem to be responsible for temporarily lower (apparent) diffusion coefficients and, thus, for the evolution of additional overpotentials during intercalation.
000860244 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000860244 588__ $$aDataset connected to CrossRef
000860244 7001_ $$0P:(DE-Juel1)172048$$aMeister, P.$$b1$$ufzj
000860244 7001_ $$0P:(DE-Juel1)177014$$aKuo, Liang-Yin$$b2$$ufzj
000860244 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b3$$ufzj
000860244 7001_ $$0P:(DE-Juel1)174502$$aKaghazchi, Payam$$b4$$eCorresponding author$$ufzj
000860244 7001_ $$0P:(DE-HGF)0$$aPlacke, Tobias$$b5$$eCorresponding author
000860244 773__ $$0PERI:(DE-600)1483548-4$$a10.1016/j.electacta.2018.07.181$$gVol. 284, p. 669 - 680$$p669$$tElectrochimica acta$$v284$$x0013-4686$$y2018
000860244 8564_ $$uhttps://juser.fz-juelich.de/record/860244/files/1-s2.0-S0013468618316992-main.pdf$$yRestricted
000860244 8564_ $$uhttps://juser.fz-juelich.de/record/860244/files/1-s2.0-S0013468618316992-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000860244 909CO $$ooai:juser.fz-juelich.de:860244$$pVDB
000860244 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172048$$aForschungszentrum Jülich$$b1$$kFZJ
000860244 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177014$$aForschungszentrum Jülich$$b2$$kFZJ
000860244 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b3$$kFZJ
000860244 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174502$$aForschungszentrum Jülich$$b4$$kFZJ
000860244 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000860244 9141_ $$y2019
000860244 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000860244 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELECTROCHIM ACTA : 2017
000860244 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860244 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860244 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000860244 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860244 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860244 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860244 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860244 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860244 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860244 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860244 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bELECTROCHIM ACTA : 2017
000860244 920__ $$lyes
000860244 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000860244 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x1
000860244 980__ $$ajournal
000860244 980__ $$aVDB
000860244 980__ $$aI:(DE-Juel1)IEK-1-20101013
000860244 980__ $$aI:(DE-Juel1)IEK-12-20141217
000860244 980__ $$aUNRESTRICTED
000860244 981__ $$aI:(DE-Juel1)IMD-4-20141217
000860244 981__ $$aI:(DE-Juel1)IMD-2-20101013