001     860244
005     20240712113054.0
024 7 _ |a 10.1016/j.electacta.2018.07.181
|2 doi
024 7 _ |a 0013-4686
|2 ISSN
024 7 _ |a 1873-3859
|2 ISSN
024 7 _ |a WOS:000442485100073
|2 WOS
037 _ _ |a FZJ-2019-01028
082 _ _ |a 540
100 1 _ |a Heckmann, A.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a A route towards understanding the kinetic processes of bis(trifluoromethanesulfonyl) imide anion intercalation into graphite for dual-ion batteries
260 _ _ |a New York, NY [u.a.]
|c 2018
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1552997421_14319
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Even though lithium ion batteries are the state-of-the-art battery technology for numerous applications, there is extensive research on alternative battery technologies. Dual-ion batteries (DIBs) and in particular their all carbon/graphite versions, the dual-carbon (DCBs) and dual-graphite batteries (DGBs), have emerged as an upcoming and alternative approach for stationary energy storage systems. However, there are still fundamental electrochemical processes during charge and discharge operation of DIBs not fully understood so far. In this work, the kinetic processes during bis(trifluoromethanesulfonyl) imide (TFSI) anion intercalation into graphitic carbon, that proceeds by stage formation, are discussed in detail. The computational calculation of structural parameters of TFSI-graphite intercalation compounds (TFSI-GICs) indicates a possible maximum specific capacity of 140 mAh g⁻¹ and a walking-like diffusion of the TFSI anion within the graphite lattice. Moreover, a particular focus is set on understanding the overpotential generation during the charge process and its correlation to different specific capacities for varying graphite particle sizes and operating temperatures. In this context, a mechanism, supported by electrochemical and computational experiments, is proposed explaining the overpotential evolution on the basis of (apparent) anion diffusion coefficients in graphite. Temporarily higher (apparent) diffusion activation energies close to filled stages seem to be responsible for temporarily lower (apparent) diffusion coefficients and, thus, for the evolution of additional overpotentials during intercalation.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Meister, P.
|0 P:(DE-Juel1)172048
|b 1
|u fzj
700 1 _ |a Kuo, Liang-Yin
|0 P:(DE-Juel1)177014
|b 2
|u fzj
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 3
|u fzj
700 1 _ |a Kaghazchi, Payam
|0 P:(DE-Juel1)174502
|b 4
|e Corresponding author
|u fzj
700 1 _ |a Placke, Tobias
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 _ _ |a 10.1016/j.electacta.2018.07.181
|g Vol. 284, p. 669 - 680
|0 PERI:(DE-600)1483548-4
|p 669
|t Electrochimica acta
|v 284
|y 2018
|x 0013-4686
856 4 _ |u https://juser.fz-juelich.de/record/860244/files/1-s2.0-S0013468618316992-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/860244/files/1-s2.0-S0013468618316992-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:860244
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)172048
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)177014
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)166130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)174502
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ELECTROCHIM ACTA : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ELECTROCHIM ACTA : 2017
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21