000860246 001__ 860246
000860246 005__ 20240711085552.0
000860246 0247_ $$2Handle$$a2128/21867
000860246 0247_ $$2ISSN$$a1866-1793
000860246 020__ $$a978-3-95806-382-2
000860246 037__ $$aFZJ-2019-01030
000860246 1001_ $$0P:(DE-Juel1)165865$$aNaqash, Sahir$$b0$$eCorresponding author$$ufzj
000860246 245__ $$aSodium Ion Conducting Ceramics for Sodium Ion Batteries$$f- 2019-03-31
000860246 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2019
000860246 300__ $$avii, 134 S.
000860246 3367_ $$2DataCite$$aOutput Types/Dissertation
000860246 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000860246 3367_ $$2ORCID$$aDISSERTATION
000860246 3367_ $$2BibTeX$$aPHDTHESIS
000860246 3367_ $$02$$2EndNote$$aThesis
000860246 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1552998363_20582
000860246 3367_ $$2DRIVER$$adoctoralThesis
000860246 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment$$v451
000860246 502__ $$aRWTH Aachen, Diss., 2018$$bDr.$$cRWTH Aachen$$d2018
000860246 520__ $$aThe overwhelming demand of energy storage technologies has forced the scientific community to look beyond the commercially available options such as lithium ion batteries. As one of a potential alternative, sodium ion battery technology works in a similar way but provides the advantage of abundant and readily available raw materials at low cost. In addition, the lithium ion batteries, so far, are commercially available only with a liquid electrolyte. The electrolyte material in liquid state poses serious safety concerns, in case there is a leakage causing a short circuit and thermal runaway. Therefore an all-solid-state approach is one way to improve the safety issues of state-of-the-art batteries. This work is performed to develop sodium ion-conducting ceramics that can be used in all solid-state sodium ion batteries. Among several available options, the NASICON-type materials were selected because these types of materials are known to produce highly conductive ceramics and their conductivity in the best case has reached 4 mS cm$^{-1}$. Therefore, this work focuses on the materials and processing aspects of these sodium ion-conducting materials. It can be is divided into two sections: 1) synthesis & processing and 2) materials design and composition. In the first part, main focus is on synthesis and processing of original NASICON material Na$_{3}$Zr$_{2}$Si$_{2}$PO$_{12}$. First, a solution-assisted solid state reaction synthesis route for producing Na$_{3}$Zr$_{2}$Si$_{2}$PO$_{12}$ is reported and compared with the so-called Pechini synthesis method. Secondly, Na$_{3}$Zr$_{2}$Si$_{2}$PO$_{12}$ is processed applying different sintering conditions to control its microstructure to better understand the microstructure-conductivity relationship of the material. In the second part, the focus is on the materials design and composition by modifying the NASICON chemistry. This is achieved by substituting suitable cations into the NASICON structure. Furthermore, an attempt was made to reduce the processing temperature of NASICON materials by defining a series of compositions, so-called glass-NASICON composites, towards the low melting composition in the quaternary phase diagram of Na$_{2}$O–SiO$_{2}$–ZrO$_{2}$ and P$_{2}$O$_{5}$. The objective is to utilize the conduction properties of NASICON and low melting point of sodium-containing glasses to produce a material with sufficient Na$^{+}$ ion conductivity and reduced processing temperature (< 1000 °C). This would then be used as electrolyte material for fabricating an all-solid state Na$^{+}$ battery.
000860246 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000860246 8564_ $$uhttps://juser.fz-juelich.de/record/860246/files/Energie_Umwelt_451.pdf$$yOpenAccess
000860246 8564_ $$uhttps://juser.fz-juelich.de/record/860246/files/Energie_Umwelt_451.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000860246 909CO $$ooai:juser.fz-juelich.de:860246$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000860246 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000860246 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000860246 9141_ $$y2019
000860246 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165865$$aForschungszentrum Jülich$$b0$$kFZJ
000860246 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000860246 920__ $$lyes
000860246 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000860246 9801_ $$aFullTexts
000860246 980__ $$aphd
000860246 980__ $$aVDB
000860246 980__ $$aUNRESTRICTED
000860246 980__ $$abook
000860246 980__ $$aI:(DE-Juel1)IEK-1-20101013
000860246 981__ $$aI:(DE-Juel1)IMD-2-20101013
000860246 981__ $$aI:(DE-Juel1)IMD-2-20101013