001     860246
005     20240711085552.0
020 _ _ |a 978-3-95806-382-2
024 7 _ |2 Handle
|a 2128/21867
024 7 _ |2 ISSN
|a 1866-1793
037 _ _ |a FZJ-2019-01030
100 1 _ |0 P:(DE-Juel1)165865
|a Naqash, Sahir
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Sodium Ion Conducting Ceramics for Sodium Ion Batteries
|f - 2019-03-31
260 _ _ |a Jülich
|b Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag
|c 2019
300 _ _ |a vii, 134 S.
336 7 _ |2 DataCite
|a Output Types/Dissertation
336 7 _ |0 PUB:(DE-HGF)3
|2 PUB:(DE-HGF)
|a Book
|m book
336 7 _ |2 ORCID
|a DISSERTATION
336 7 _ |2 BibTeX
|a PHDTHESIS
336 7 _ |0 2
|2 EndNote
|a Thesis
336 7 _ |0 PUB:(DE-HGF)11
|2 PUB:(DE-HGF)
|a Dissertation / PhD Thesis
|b phd
|m phd
|s 1552998363_20582
336 7 _ |2 DRIVER
|a doctoralThesis
490 0 _ |a Schriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment
|v 451
502 _ _ |a RWTH Aachen, Diss., 2018
|b Dr.
|c RWTH Aachen
|d 2018
520 _ _ |a The overwhelming demand of energy storage technologies has forced the scientific community to look beyond the commercially available options such as lithium ion batteries. As one of a potential alternative, sodium ion battery technology works in a similar way but provides the advantage of abundant and readily available raw materials at low cost. In addition, the lithium ion batteries, so far, are commercially available only with a liquid electrolyte. The electrolyte material in liquid state poses serious safety concerns, in case there is a leakage causing a short circuit and thermal runaway. Therefore an all-solid-state approach is one way to improve the safety issues of state-of-the-art batteries. This work is performed to develop sodium ion-conducting ceramics that can be used in all solid-state sodium ion batteries. Among several available options, the NASICON-type materials were selected because these types of materials are known to produce highly conductive ceramics and their conductivity in the best case has reached 4 mS cm$^{-1}$. Therefore, this work focuses on the materials and processing aspects of these sodium ion-conducting materials. It can be is divided into two sections: 1) synthesis & processing and 2) materials design and composition. In the first part, main focus is on synthesis and processing of original NASICON material Na$_{3}$Zr$_{2}$Si$_{2}$PO$_{12}$. First, a solution-assisted solid state reaction synthesis route for producing Na$_{3}$Zr$_{2}$Si$_{2}$PO$_{12}$ is reported and compared with the so-called Pechini synthesis method. Secondly, Na$_{3}$Zr$_{2}$Si$_{2}$PO$_{12}$ is processed applying different sintering conditions to control its microstructure to better understand the microstructure-conductivity relationship of the material. In the second part, the focus is on the materials design and composition by modifying the NASICON chemistry. This is achieved by substituting suitable cations into the NASICON structure. Furthermore, an attempt was made to reduce the processing temperature of NASICON materials by defining a series of compositions, so-called glass-NASICON composites, towards the low melting composition in the quaternary phase diagram of Na$_{2}$O–SiO$_{2}$–ZrO$_{2}$ and P$_{2}$O$_{5}$. The objective is to utilize the conduction properties of NASICON and low melting point of sodium-containing glasses to produce a material with sufficient Na$^{+}$ ion conductivity and reduced processing temperature (< 1000 °C). This would then be used as electrolyte material for fabricating an all-solid state Na$^{+}$ battery.
536 _ _ |0 G:(DE-HGF)POF3-899
|a 899 - ohne Topic (POF3-899)
|c POF3-899
|f POF III
|x 0
856 4 _ |u https://juser.fz-juelich.de/record/860246/files/Energie_Umwelt_451.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/860246/files/Energie_Umwelt_451.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:860246
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)165865
|a Forschungszentrum Jülich
|b 0
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-899
|1 G:(DE-HGF)POF3-890
|2 G:(DE-HGF)POF3-800
|a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a phd
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a book
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21