000860247 001__ 860247
000860247 005__ 20240711085552.0
000860247 0247_ $$2doi$$a10.1021/acsami.8b07683
000860247 0247_ $$2ISSN$$a1944-8244
000860247 0247_ $$2ISSN$$a1944-8252
000860247 0247_ $$2pmid$$apmid:30044617
000860247 0247_ $$2WOS$$aWOS:000442706600068
000860247 037__ $$aFZJ-2019-01031
000860247 082__ $$a600
000860247 1001_ $$0P:(DE-HGF)0$$aNölle, Roman$$b0
000860247 245__ $$aPentafluorophenyl Isocyanate as an Effective Electrolyte Additive for Improved Performance of Silicon-Based Lithium-Ion Full Cells
000860247 260__ $$aWashington, DC$$bSoc.$$c2018
000860247 3367_ $$2DRIVER$$aarticle
000860247 3367_ $$2DataCite$$aOutput Types/Journal article
000860247 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552998711_15224
000860247 3367_ $$2BibTeX$$aARTICLE
000860247 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860247 3367_ $$00$$2EndNote$$aJournal Article
000860247 520__ $$aDue to its high specific and volumetric capacity and relatively low operation potential, silicon (Si) has attracted much attention to be utilized as a high-capacity anode material for lithium-ion batteries (LIBs) with increased energy density. However, the application of Si within commercial LIBs is still hindered by its poor cycling stability related to the huge volume changes of Si upon lithiation/delithiation, followed by continuous electrolyte decomposition and active lithium loss at the anode side. In this work, we present the application of pentafluorophenyl isocyanate (PFPI) as an effective electrolyte additive for lithium-ion full cells, containing a pure, magnetron-sputtered Si anode and a LiNi1/3Mn1/3Co1/3O2 (NMC-111) cathode. The performance of the Si/NMC-111 full cells is significantly improved in terms of capacity retention and Coulombic efficiency by the addition of 2 wt % PFPI to the baseline electrolyte and is compared to the well-known additives vinylene carbonate and fluoroethylene carbonate. Furthermore, it is revealed that the additive is able to reduce the active lithium losses by forming an effective solid–electrolyte interphase (SEI) on the Si anode. X-ray photoelectron spectroscopy investigations unveil that PFPI is a main part of the SEI layer, leading to less active lithium immobilized within the interphase. Overall, our results pave the path for a broad range of different isocyanate compounds, which have not been studied for Si-based anodes in lithium-ion full cells so far. These compounds can be easily adjusted by modifying the chemical structure and/or functional groups incorporated within the molecule, to specifically tailor the SEI layer for Si-based anodes in LIBs.
000860247 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000860247 588__ $$aDataset connected to CrossRef
000860247 7001_ $$0P:(DE-HGF)0$$aAchazi, Andreas J.$$b1
000860247 7001_ $$0P:(DE-Juel1)174502$$aKaghazchi, Payam$$b2$$eCorresponding author
000860247 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b3$$eCorresponding author
000860247 7001_ $$00000-0002-2097-5193$$aPlacke, Tobias$$b4
000860247 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.8b07683$$gVol. 10, no. 33, p. 28187 - 28198$$n33$$p28187 - 28198$$tACS applied materials & interfaces$$v10$$x1944-8252$$y2018
000860247 8564_ $$uhttps://juser.fz-juelich.de/record/860247/files/acsami.8b07683.pdf$$yRestricted
000860247 8564_ $$uhttps://juser.fz-juelich.de/record/860247/files/acsami.8b07683.pdf?subformat=pdfa$$xpdfa$$yRestricted
000860247 909CO $$ooai:juser.fz-juelich.de:860247$$pVDB
000860247 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174502$$aForschungszentrum Jülich$$b2$$kFZJ
000860247 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b3$$kFZJ
000860247 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000860247 9141_ $$y2019
000860247 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860247 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860247 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000860247 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2017
000860247 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860247 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860247 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860247 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860247 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860247 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000860247 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2017
000860247 920__ $$lyes
000860247 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000860247 980__ $$ajournal
000860247 980__ $$aVDB
000860247 980__ $$aI:(DE-Juel1)IEK-1-20101013
000860247 980__ $$aUNRESTRICTED
000860247 981__ $$aI:(DE-Juel1)IMD-2-20101013