001     860247
005     20240711085552.0
024 7 _ |a 10.1021/acsami.8b07683
|2 doi
024 7 _ |a 1944-8244
|2 ISSN
024 7 _ |a 1944-8252
|2 ISSN
024 7 _ |a pmid:30044617
|2 pmid
024 7 _ |a WOS:000442706600068
|2 WOS
037 _ _ |a FZJ-2019-01031
082 _ _ |a 600
100 1 _ |a Nölle, Roman
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Pentafluorophenyl Isocyanate as an Effective Electrolyte Additive for Improved Performance of Silicon-Based Lithium-Ion Full Cells
260 _ _ |a Washington, DC
|c 2018
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1552998711_15224
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Due to its high specific and volumetric capacity and relatively low operation potential, silicon (Si) has attracted much attention to be utilized as a high-capacity anode material for lithium-ion batteries (LIBs) with increased energy density. However, the application of Si within commercial LIBs is still hindered by its poor cycling stability related to the huge volume changes of Si upon lithiation/delithiation, followed by continuous electrolyte decomposition and active lithium loss at the anode side. In this work, we present the application of pentafluorophenyl isocyanate (PFPI) as an effective electrolyte additive for lithium-ion full cells, containing a pure, magnetron-sputtered Si anode and a LiNi1/3Mn1/3Co1/3O2 (NMC-111) cathode. The performance of the Si/NMC-111 full cells is significantly improved in terms of capacity retention and Coulombic efficiency by the addition of 2 wt % PFPI to the baseline electrolyte and is compared to the well-known additives vinylene carbonate and fluoroethylene carbonate. Furthermore, it is revealed that the additive is able to reduce the active lithium losses by forming an effective solid–electrolyte interphase (SEI) on the Si anode. X-ray photoelectron spectroscopy investigations unveil that PFPI is a main part of the SEI layer, leading to less active lithium immobilized within the interphase. Overall, our results pave the path for a broad range of different isocyanate compounds, which have not been studied for Si-based anodes in lithium-ion full cells so far. These compounds can be easily adjusted by modifying the chemical structure and/or functional groups incorporated within the molecule, to specifically tailor the SEI layer for Si-based anodes in LIBs.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Achazi, Andreas J.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kaghazchi, Payam
|0 P:(DE-Juel1)174502
|b 2
|e Corresponding author
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 3
|e Corresponding author
700 1 _ |a Placke, Tobias
|0 0000-0002-2097-5193
|b 4
773 _ _ |a 10.1021/acsami.8b07683
|g Vol. 10, no. 33, p. 28187 - 28198
|0 PERI:(DE-600)2467494-1
|n 33
|p 28187 - 28198
|t ACS applied materials & interfaces
|v 10
|y 2018
|x 1944-8252
856 4 _ |u https://juser.fz-juelich.de/record/860247/files/acsami.8b07683.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/860247/files/acsami.8b07683.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:860247
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)174502
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL MATER INTER : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS APPL MATER INTER : 2017
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21