000860249 001__ 860249
000860249 005__ 20240711085552.0
000860249 0247_ $$2doi$$a10.1021/acsami.8b06366
000860249 0247_ $$2ISSN$$a1944-8244
000860249 0247_ $$2ISSN$$a1944-8252
000860249 0247_ $$2pmid$$apmid:30141900
000860249 0247_ $$2WOS$$aWOS:000445439900034
000860249 0247_ $$2altmetric$$aaltmetric:47612304
000860249 037__ $$aFZJ-2019-01033
000860249 082__ $$a600
000860249 1001_ $$0P:(DE-HGF)0$$aLiu, Yulong$$b0
000860249 245__ $$aStabilizing the Interface of NASICON Solid Electrolyte against Li Metal with Atomic Layer Deposition
000860249 260__ $$aWashington, DC$$bSoc.$$c2018
000860249 3367_ $$2DRIVER$$aarticle
000860249 3367_ $$2DataCite$$aOutput Types/Journal article
000860249 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552998858_19633
000860249 3367_ $$2BibTeX$$aARTICLE
000860249 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860249 3367_ $$00$$2EndNote$$aJournal Article
000860249 520__ $$aSolid-state batteries have been considered as one of the most promising next-generation energy storage systems because of their high safety and energy density. Solid-state electrolytes are the key component of the solid-state battery, which exhibit high ionic conductivity, good chemical stability, and wide electrochemical windows. LATP [Li1.3Al0.3Ti1.7 (PO4)3] solid electrolyte has been widely investigated for its high ionic conductivity. Nevertheless, the chemical instability of LATP against Li metal has hindered its application in solid-state batteries. Here, we propose that atomic layer deposition (ALD) coating on LATP surfaces is able to stabilize the LATP/Li interface by reducing the side reactions. In comparison with bare LATP, the Al2O3-coated LATP by ALD exhibits a stable cycling behavior with smaller voltage hysteresis for 600 h, as well as small resistance. More importantly, on the basis of advanced characterizations such as high-resolution transmission electron spectroscope-electron energy loss spectroscopy, the lithium penetration into the LATP bulk and Ti4+ reduction are significantly limited. The results suggest that ALD is very effective in improving solid-state electrolyte/electrode interface stability.
000860249 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000860249 588__ $$aDataset connected to CrossRef
000860249 7001_ $$00000-0001-5399-1440$$aSun, Qian$$b1
000860249 7001_ $$0P:(DE-HGF)0$$aZhao, Yang$$b2
000860249 7001_ $$00000-0002-3903-8634$$aWang, Biqiong$$b3
000860249 7001_ $$0P:(DE-Juel1)174502$$aKaghazchi, Payam$$b4$$eCorresponding author
000860249 7001_ $$0P:(DE-HGF)0$$aAdair, Keegan R.$$b5
000860249 7001_ $$0P:(DE-HGF)0$$aLi, Ruying$$b6
000860249 7001_ $$0P:(DE-HGF)0$$aZhang, Cheng$$b7
000860249 7001_ $$0P:(DE-HGF)0$$aLiu, Jingru$$b8
000860249 7001_ $$0P:(DE-Juel1)177014$$aKuo, Liang-Yin$$b9
000860249 7001_ $$0P:(DE-HGF)0$$aHu, Yongfeng$$b10
000860249 7001_ $$0P:(DE-HGF)0$$aSham, Tsun-Kong$$b11
000860249 7001_ $$0P:(DE-HGF)0$$aZhang, Li$$b12
000860249 7001_ $$0P:(DE-HGF)0$$aYang, Rong$$b13
000860249 7001_ $$0P:(DE-HGF)0$$aLu, Shigang$$b14
000860249 7001_ $$0P:(DE-HGF)0$$aSong, Xiping$$b15
000860249 7001_ $$00000-0003-2881-8237$$aSun, Xueliang$$b16
000860249 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.8b06366$$gVol. 10, no. 37, p. 31240 - 31248$$n37$$p31240 - 31248$$tACS applied materials & interfaces$$v10$$x1944-8252$$y2018
000860249 8564_ $$uhttps://juser.fz-juelich.de/record/860249/files/acsami.8b06366.pdf$$yRestricted
000860249 8564_ $$uhttps://juser.fz-juelich.de/record/860249/files/acsami.8b06366.pdf?subformat=pdfa$$xpdfa$$yRestricted
000860249 909CO $$ooai:juser.fz-juelich.de:860249$$pVDB
000860249 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174502$$aForschungszentrum Jülich$$b4$$kFZJ
000860249 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177014$$aForschungszentrum Jülich$$b9$$kFZJ
000860249 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000860249 9141_ $$y2019
000860249 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860249 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860249 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000860249 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2017
000860249 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860249 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860249 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860249 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860249 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860249 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000860249 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2017
000860249 920__ $$lyes
000860249 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000860249 980__ $$ajournal
000860249 980__ $$aVDB
000860249 980__ $$aI:(DE-Juel1)IEK-1-20101013
000860249 980__ $$aUNRESTRICTED
000860249 981__ $$aI:(DE-Juel1)IMD-2-20101013
000860249 981__ $$aI:(DE-Juel1)IMD-2-20101013