001     860249
005     20240711085552.0
024 7 _ |a 10.1021/acsami.8b06366
|2 doi
024 7 _ |a 1944-8244
|2 ISSN
024 7 _ |a 1944-8252
|2 ISSN
024 7 _ |a pmid:30141900
|2 pmid
024 7 _ |a WOS:000445439900034
|2 WOS
024 7 _ |a altmetric:47612304
|2 altmetric
037 _ _ |a FZJ-2019-01033
082 _ _ |a 600
100 1 _ |a Liu, Yulong
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Stabilizing the Interface of NASICON Solid Electrolyte against Li Metal with Atomic Layer Deposition
260 _ _ |a Washington, DC
|c 2018
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1552998858_19633
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Solid-state batteries have been considered as one of the most promising next-generation energy storage systems because of their high safety and energy density. Solid-state electrolytes are the key component of the solid-state battery, which exhibit high ionic conductivity, good chemical stability, and wide electrochemical windows. LATP [Li1.3Al0.3Ti1.7 (PO4)3] solid electrolyte has been widely investigated for its high ionic conductivity. Nevertheless, the chemical instability of LATP against Li metal has hindered its application in solid-state batteries. Here, we propose that atomic layer deposition (ALD) coating on LATP surfaces is able to stabilize the LATP/Li interface by reducing the side reactions. In comparison with bare LATP, the Al2O3-coated LATP by ALD exhibits a stable cycling behavior with smaller voltage hysteresis for 600 h, as well as small resistance. More importantly, on the basis of advanced characterizations such as high-resolution transmission electron spectroscope-electron energy loss spectroscopy, the lithium penetration into the LATP bulk and Ti4+ reduction are significantly limited. The results suggest that ALD is very effective in improving solid-state electrolyte/electrode interface stability.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Sun, Qian
|0 0000-0001-5399-1440
|b 1
700 1 _ |a Zhao, Yang
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wang, Biqiong
|0 0000-0002-3903-8634
|b 3
700 1 _ |a Kaghazchi, Payam
|0 P:(DE-Juel1)174502
|b 4
|e Corresponding author
700 1 _ |a Adair, Keegan R.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Li, Ruying
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Zhang, Cheng
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Liu, Jingru
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Kuo, Liang-Yin
|0 P:(DE-Juel1)177014
|b 9
700 1 _ |a Hu, Yongfeng
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Sham, Tsun-Kong
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Zhang, Li
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Yang, Rong
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Lu, Shigang
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Song, Xiping
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Sun, Xueliang
|0 0000-0003-2881-8237
|b 16
773 _ _ |a 10.1021/acsami.8b06366
|g Vol. 10, no. 37, p. 31240 - 31248
|0 PERI:(DE-600)2467494-1
|n 37
|p 31240 - 31248
|t ACS applied materials & interfaces
|v 10
|y 2018
|x 1944-8252
856 4 _ |u https://juser.fz-juelich.de/record/860249/files/acsami.8b06366.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/860249/files/acsami.8b06366.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:860249
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)174502
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)177014
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL MATER INTER : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS APPL MATER INTER : 2017
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21