Home > Publications database > Stabilizing the Interface of NASICON Solid Electrolyte against Li Metal with Atomic Layer Deposition > print |
001 | 860249 | ||
005 | 20240711085552.0 | ||
024 | 7 | _ | |a 10.1021/acsami.8b06366 |2 doi |
024 | 7 | _ | |a 1944-8244 |2 ISSN |
024 | 7 | _ | |a 1944-8252 |2 ISSN |
024 | 7 | _ | |a pmid:30141900 |2 pmid |
024 | 7 | _ | |a WOS:000445439900034 |2 WOS |
024 | 7 | _ | |a altmetric:47612304 |2 altmetric |
037 | _ | _ | |a FZJ-2019-01033 |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Liu, Yulong |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Stabilizing the Interface of NASICON Solid Electrolyte against Li Metal with Atomic Layer Deposition |
260 | _ | _ | |a Washington, DC |c 2018 |b Soc. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1552998858_19633 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Solid-state batteries have been considered as one of the most promising next-generation energy storage systems because of their high safety and energy density. Solid-state electrolytes are the key component of the solid-state battery, which exhibit high ionic conductivity, good chemical stability, and wide electrochemical windows. LATP [Li1.3Al0.3Ti1.7 (PO4)3] solid electrolyte has been widely investigated for its high ionic conductivity. Nevertheless, the chemical instability of LATP against Li metal has hindered its application in solid-state batteries. Here, we propose that atomic layer deposition (ALD) coating on LATP surfaces is able to stabilize the LATP/Li interface by reducing the side reactions. In comparison with bare LATP, the Al2O3-coated LATP by ALD exhibits a stable cycling behavior with smaller voltage hysteresis for 600 h, as well as small resistance. More importantly, on the basis of advanced characterizations such as high-resolution transmission electron spectroscope-electron energy loss spectroscopy, the lithium penetration into the LATP bulk and Ti4+ reduction are significantly limited. The results suggest that ALD is very effective in improving solid-state electrolyte/electrode interface stability. |
536 | _ | _ | |a 131 - Electrochemical Storage (POF3-131) |0 G:(DE-HGF)POF3-131 |c POF3-131 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Sun, Qian |0 0000-0001-5399-1440 |b 1 |
700 | 1 | _ | |a Zhao, Yang |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Wang, Biqiong |0 0000-0002-3903-8634 |b 3 |
700 | 1 | _ | |a Kaghazchi, Payam |0 P:(DE-Juel1)174502 |b 4 |e Corresponding author |
700 | 1 | _ | |a Adair, Keegan R. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Li, Ruying |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Zhang, Cheng |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Liu, Jingru |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Kuo, Liang-Yin |0 P:(DE-Juel1)177014 |b 9 |
700 | 1 | _ | |a Hu, Yongfeng |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Sham, Tsun-Kong |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Zhang, Li |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Yang, Rong |0 P:(DE-HGF)0 |b 13 |
700 | 1 | _ | |a Lu, Shigang |0 P:(DE-HGF)0 |b 14 |
700 | 1 | _ | |a Song, Xiping |0 P:(DE-HGF)0 |b 15 |
700 | 1 | _ | |a Sun, Xueliang |0 0000-0003-2881-8237 |b 16 |
773 | _ | _ | |a 10.1021/acsami.8b06366 |g Vol. 10, no. 37, p. 31240 - 31248 |0 PERI:(DE-600)2467494-1 |n 37 |p 31240 - 31248 |t ACS applied materials & interfaces |v 10 |y 2018 |x 1944-8252 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/860249/files/acsami.8b06366.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/860249/files/acsami.8b06366.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:860249 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)174502 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)177014 |
913 | 1 | _ | |a DE-HGF |l Speicher und vernetzte Infrastrukturen |1 G:(DE-HGF)POF3-130 |0 G:(DE-HGF)POF3-131 |2 G:(DE-HGF)POF3-100 |v Electrochemical Storage |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ACS APPL MATER INTER : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ACS APPL MATER INTER : 2017 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|