001     860250
005     20240711085615.0
024 7 _ |a 10.1021/acsami.8b16522
|2 doi
024 7 _ |a 1944-8244
|2 ISSN
024 7 _ |a 1944-8252
|2 ISSN
024 7 _ |a pmid:30431251
|2 pmid
024 7 _ |a WOS:000452694100003
|2 WOS
037 _ _ |a FZJ-2019-01034
082 _ _ |a 600
100 1 _ |a Choi, Ji Ung
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Unraveling the Role of Earth-Abundant Fe in the Suppression of Jahn–Teller Distortion of P′2-Type Na 2/3 MnO 2 : Experimental and Theoretical Studies
260 _ _ |a Washington, DC
|c 2018
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1552998941_19633
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Layered Na2/3MnO2 suffers from capacity loss due to Jahn–Teller (J–T) distortion by Mn3+ ions. Herein, density functional theory calculations suggest Na2/3[FexMn1–x]O2 suppresses the J–T effect. The Fe substitution results in a decreased oxygen–metal–oxygen length, leading to decreases in the b and c lattice parameters but an increase in the a lattice constant. As a result, the capacity retention and rate capability are enhanced with an additional redox pair associated with Fe4+/3+. Finally, the thermal properties are improved, with the Fe substitution delaying the exothermic reaction and reducing exothermic heat.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Park, Yun Ji
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Jo, Jae Hyeon
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kuo, Liang-Yin
|0 P:(DE-Juel1)177014
|b 3
|u fzj
700 1 _ |a Kaghazchi, Payam
|0 P:(DE-Juel1)174502
|b 4
|e Corresponding author
|u fzj
700 1 _ |a Myung, Seung-Taek
|0 0000-0001-6888-5376
|b 5
|e Corresponding author
773 _ _ |a 10.1021/acsami.8b16522
|g Vol. 10, no. 48, p. 40978 - 40984
|0 PERI:(DE-600)2467494-1
|n 48
|p 40978 - 40984
|t ACS applied materials & interfaces
|v 10
|y 2018
|x 1944-8252
856 4 _ |u https://juser.fz-juelich.de/record/860250/files/acsami.8b16522.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/860250/files/acsami.8b16522.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:860250
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)177014
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)174502
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL MATER INTER : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS APPL MATER INTER : 2017
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21