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INTRODUCTION & MOTIVATION
Data processing (difficulty: easy)

E.g. gray-valued image processing.

Tools: mathematical morphology (discrete or continuous).

PDE-based processing (e.g. Perona-Malik diffusion, coherence-enhancing

anisotropic diffusion).

Prerequisites: linear combinations, discretizations of derivatives,

roots/powers, max/min.
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INTRODUCTION & MOTIVATION
Data processing (difficulty: hard)

What about matrix-valued

data, e.g. positive

semi-definite matrices

(DT-MRI)?

Linear combinations,

roots/powers, discretization

of derivatives ready for use.

Max/min is available

(Loewner ordering).

Catch: only partial ordering. . Real DT-MRI data MCED

In other applications: matrices of a matrix field are not symmetric!

E.g. material science: stress/strain tensors can loose symmetry;

diagonalization: rotation fields.
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INTRODUCTION & MOTIVATION
Data processing (difficulty: bring it on)

Interpolation of rotation matrices?

1
2
· +

1
2
· = ?

Interpolation specific for rotation matrices (M. Moakher, SIAM, 2002).

1
2
⊙ ⊕ 1

2
⊙ =

What about further operations?

What about other classes of non-symmetric matrices?

Idea: complexification, Hermitian matrices, Her(n) .
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CALCULUS FOR HERMITIAN MATRICES
Basic properties

Her(n) = {H ∈ C
n×n |H = H∗} is R-vector space.

• ∗ stands for transposition with complex conjugation.

H = Re(H) + Im(H)i ,

• Symmetric real part Re(H) .
• Skew-symmetric imaginary part Im(H) .

H unitarily diagonalizable: H = UDU∗
,

• U unitary: U∗U = UU∗ = I .
• D = diag(d1, . . . , dn) diagonal matrix with real-valued d1 ≥ . . . ≥ dn .

Loewner ordering: H1 ≥ H2 ⇐⇒ H1 − H2 positive semi-definite.
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CALCULUS FOR HERMITIAN MATRICES
Dictionary for Hermitian matrices

Setting Scalar-valued Matrix-valued

Function f :

{

R −→ R

x 7→ f (x)
F :

{

Her(n) −→ Her(n)
H 7→ U diag(f (d1), . . . , f (dn))U∗

Partial ∂ωh, ∂ωH :=
(

∂ωhij

)

ij
,

derivatives ω ∈ {t , x1, . . . , xd} ω ∈ {t , x1, . . . , xd}

∇h(x) := (∂x1
h(x), . . . , ∂xd

h(x))⊤, ∇H(x) := (∂x1
H(x), . . . , ∂xd

H(x))⊤,

Gradient
∇h(x) ∈ Rd ∇H(x) ∈ (Her(n))d
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CALCULUS FOR HERMITIAN MATRICES
Dictionary for Hermitian matrices

Setting Scalar-valued Matrix-valued

‖w‖p := p
√

|w1|p + · · ·+ |wd |p , ‖|W|‖p := p
√

|W1|p + · · ·+ |Wd |p ,

Length
‖w‖p ∈ [0,+∞[ ‖|W|‖p ∈ Her+(n)

Supremum sup(a, b) psup(A,B) = 1
2
(A + B + |A − B|)

Infimum inf(a, b) pinf(A,B) = 1
2
(A + B − |A − B|)

Image processing tools for symmetric matrices carry over to Hermitian matrices.
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CALCULUS FOR HERMITIAN MATRICES
Embedding MR(n) into Her(n)

Linear mapping Φ : MR(n) −→ Her(n)

Φ : M 7−→
1

2
(M + M⊤) +

i

2
(M − M⊤)

Inverse mapping Φ−1 : Her(n) −→ MR(n)

Φ−1 : H 7−→
1

2
(H + H⊤)−

i

2
(H − H⊤)

Processing strategy:

Her(n) Her(n)

MR(n) MR(n)

Φ

IO

Φ−1 ◦ IO ◦ Φ

Φ−1

• Operations on Hermitian matrices

via operator IO .

• IO represents averaging, psup, pinf,

time-step in numerical scheme, etc.
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PROCESSING ORTHOGONAL MATRICES
Processing orthogonal matrices, Q ∈ O(n)

O(n) ⊂ MR(n)

There is a problem.

• Before processing: Q ∈ O(n) .
• After processing: (Φ−1 ◦ IO ◦ Φ)(Q) /∈O(n) .

There is a remedy.

• Projection from MR(n) back to O(n) via best Frobenius norm approximation Q̃ ∈
O(n)

‖(Φ−1 ◦ O ◦ Φ)(Q)− Q̃‖2
F −→ min .

This nearest matrix problem allows for explicit solution:

• Orthogonal factor in polar decomposition of M .

• Q̃ = PO(n)(M) = M
(

M⊤M
)−1/2

.
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PROCESSING ORTHOGONAL MATRICES
Projection into O(n)

Augmented processing strategy

Her(n) Her(n)

O(n) ⊂ MR(n) MR(n) O(n)

Φ

IO

Φ−1 ◦ IO ◦ Φ PO(n)

Φ−1

General strategy allows for processing of

• any square real matrix ∈ MR(n) .
• any matrices from an “interesting” subset S ⊂ MR(n) .

But PS needs to be calculated.
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SUMMARY & OUTLOOK
Summary

Transition from scalar calculus to

calculus for symmetric matrices.

Proposed an extension to

Hermitian matrices.

1-to-1 link to general square

matrices.

Specialization to “interesting”

matrix subsets possible, for

example S = O(n) .

R

Sym(n)

Her(n)

MR(n)
PS

S

Φ Φ−1

Dictionaries

1st ed.

2nd ed.
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SUMMARY & OUTLOOK
Outlook

Extending the “dictionary”.

Considering other interesting classes of matrices.

Solving (numerically) nearest matrix problems.

Looking for interesting fields of applications:

Material science (crack formation), problem size: 103 × 103 × 103-grid,

10 matrix entries, 103-iterations.

High resolution 107, multispectral (102)2 images, 103-iterations.

Visualization is a problem.

Increasing the efficiency of computations.

HPC for real applications is necessary.
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