000860272 001__ 860272
000860272 005__ 20230426083205.0
000860272 0247_ $$2doi$$a10.1103/PhysRevB.98.085307
000860272 0247_ $$2ISSN$$a0163-1829
000860272 0247_ $$2ISSN$$a0556-2805
000860272 0247_ $$2ISSN$$a1050-2947
000860272 0247_ $$2ISSN$$a1094-1622
000860272 0247_ $$2ISSN$$a1095-3795
000860272 0247_ $$2ISSN$$a1098-0121
000860272 0247_ $$2ISSN$$a1538-4489
000860272 0247_ $$2ISSN$$a1550-235X
000860272 0247_ $$2ISSN$$a2469-9950
000860272 0247_ $$2ISSN$$a2469-9969
000860272 0247_ $$2Handle$$a2128/21508
000860272 0247_ $$2WOS$$aWOS:000442667200006
000860272 0247_ $$2altmetric$$aaltmetric:34750176
000860272 037__ $$aFZJ-2019-01047
000860272 082__ $$a530
000860272 1001_ $$0P:(DE-HGF)0$$aPlacke, B. A.$$b0
000860272 245__ $$aAttractive and driven interactions in quantum dots: Mechanisms for geometric pumping
000860272 260__ $$aWoodbury, NY$$bInst.$$c2018
000860272 3367_ $$2DRIVER$$aarticle
000860272 3367_ $$2DataCite$$aOutput Types/Journal article
000860272 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1548941614_27781
000860272 3367_ $$2BibTeX$$aARTICLE
000860272 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860272 3367_ $$00$$2EndNote$$aJournal Article
000860272 520__ $$aWe analyze time-dependent transport through a quantum dot with electron-electron interaction that is statically tunable to both repulsive and attractive regimes, or even dynamically driven. Motivated by the recent experimental realization [A. Hamo et al., Nature (London) 535, 395 (2016)] of such a system in a static double quantum dot we compute the geometric pumping of charge in the limit of weak tunneling, high temperature, and slow driving. We analyze the responses for all possible pumping experiments or “driving protocols”, each defined by choosing a pair of driving parameters (gate voltage, bias voltage, tunnel coupling, electron-electron interaction). We show that such responses for different experiments can be governed by a common, underlying pumping mechanism, which is characterized by a set of effective parameters. The latter are nontrivial combinations of the experimentally driven parameters and other static parameters. If two different pumping experiments result in the same modulation of the effective parameters, i.e., the underlying mechanism is the same, then their responses will also be the same. Interestingly, for static attractive interaction we find a nonzero pumping response despite the attractive Coulomb blockade that hinders stationary transport. Furthermore, we identify a unique pumping response whose underlying mechanism relies on the interaction to be one of the driving parameters: it cannot be obtained with other sets of driving parameters. Finally, although a single-dot model with orbital pseudospin describes most of the physics of the mentioned experimental setup, it is crucial to account for the additional (real-)spin degeneracy of the double dot and the associated electron-hole symmetry breaking. This is necessary because the pumping response is more sensitive than dc transport measurements and detects this difference through pronounced qualitative effects.
000860272 536__ $$0G:(DE-HGF)POF3-141$$a141 - Controlling Electron Charge-Based Phenomena (POF3-141)$$cPOF3-141$$fPOF III$$x0
000860272 542__ $$2Crossref$$i2018-08-24$$uhttps://link.aps.org/licenses/aps-default-license
000860272 588__ $$aDataset connected to CrossRef
000860272 7001_ $$0P:(DE-HGF)0$$aPluecker, T.$$b1
000860272 7001_ $$0P:(DE-HGF)0$$aSplettstoesser, J.$$b2
000860272 7001_ $$0P:(DE-Juel1)131026$$aWegewijs, M. R.$$b3$$eCorresponding author$$ufzj
000860272 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.98.085307$$bAmerican Physical Society (APS)$$d2018-08-24$$n8$$p085307$$tPhysical Review B$$v98$$x2469-9950$$y2018
000860272 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.98.085307$$gVol. 98, no. 8, p. 085307$$n8$$p085307$$tPhysical review / B$$v98$$x2469-9950$$y2018
000860272 8564_ $$uhttps://juser.fz-juelich.de/record/860272/files/PhysRevB.98.085307.pdf$$yOpenAccess
000860272 8564_ $$uhttps://juser.fz-juelich.de/record/860272/files/PhysRevB.98.085307.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000860272 909CO $$ooai:juser.fz-juelich.de:860272$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000860272 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131026$$aForschungszentrum Jülich$$b3$$kFZJ
000860272 9131_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000860272 9141_ $$y2018
000860272 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860272 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860272 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000860272 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2017
000860272 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860272 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860272 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860272 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000860272 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000860272 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860272 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860272 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860272 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860272 920__ $$lyes
000860272 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000860272 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000860272 980__ $$ajournal
000860272 980__ $$aVDB
000860272 980__ $$aUNRESTRICTED
000860272 980__ $$aI:(DE-Juel1)PGI-2-20110106
000860272 980__ $$aI:(DE-82)080009_20140620
000860272 9801_ $$aFullTexts
000860272 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature14398
000860272 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevX.6.041042
000860272 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-017-00495-7
000860272 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature12494
000860272 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature18639
000860272 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.134.A1416
000860272 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.117.096801
000860272 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.96.056803
000860272 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.75.195402
000860272 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.81.235127
000860272 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.84.241107
000860272 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.66.2814
000860272 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.74.085305
000860272 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.134513
000860272 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.82.205308
000860272 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/0295-5075/77/58001
000860272 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.104.170601
000860272 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.104.226803
000860272 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.245308
000860272 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.58.R10135
000860272 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.283.5409.1864
000860272 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.95.155431
000860272 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1751-8113/42/19/193001
000860272 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/13/5/053042
000860272 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s10955-012-0550-6
000860272 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.92.195420
000860272 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.68.2109
000860272 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1142/S0217984993000102
000860272 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.93.081411
000860272 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.86.3855
000860272 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.90.166602
000860272 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.70.195345
000860272 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys2766