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We analyze time-dependent transport through a quantum dot with electron-electron interaction that is statically

tunable to both repulsive and attractive regimes, or even dynamically driven. Motivated by the recent experimental

realization [A. Hamo et al., Nature (London) 535, 395 (2016)] of such a system in a static double quantum dot

we compute the geometric pumping of charge in the limit of weak tunneling, high temperature, and slow driving.

We analyze the responses for all possible pumping experiments or “driving protocols”, each defined by choosing

a pair of driving parameters (gate voltage, bias voltage, tunnel coupling, electron-electron interaction). We show

that such responses for different experiments can be governed by a common, underlying pumping mechanism,

which is characterized by a set of effective parameters. The latter are nontrivial combinations of the experimentally

driven parameters and other static parameters. If two different pumping experiments result in the same modulation

of the effective parameters, i.e., the underlying mechanism is the same, then their responses will also be the same.

Interestingly, for static attractive interaction we find a nonzero pumping response despite the attractive Coulomb

blockade that hinders stationary transport. Furthermore, we identify a unique pumping response whose underlying

mechanism relies on the interaction to be one of the driving parameters: it cannot be obtained with other sets of

driving parameters. Finally, although a single-dot model with orbital pseudospin describes most of the physics of

the mentioned experimental setup, it is crucial to account for the additional (real-)spin degeneracy of the double

dot and the associated electron-hole symmetry breaking. This is necessary because the pumping response is more

sensitive than dc transport measurements and detects this difference through pronounced qualitative effects.

DOI: 10.1103/PhysRevB.98.085307

I. INTRODUCTION

Recent experimental work has demonstrated the possibility

of tuning the interaction between electrons from repulsion to

attraction in situ. Following a top-down approach in oxide

heterostructures, quantum dots have been realized in which

the interaction shows a sharp repulsion-attraction crossover

[1–3] as the electron density is varied electrostatically.1 The

responsible mechanism [2] is of high interest since it is relevant

to long-standing issues surrounding superconductivity and

magnetism in these materials and to related questions for high-

Tc superconductors [4]. Importantly, the resulting electron

pairing has been shown to occur also without superconductivity

(“preformed” electron pairs).

Other work has followed a bottom-up approach which has

the advantage that one can start from a conceptually simple

mechanism in which the tuning is well understood.

Indeed, in [5] the excitonic pairing mechanism [6] has been

implemented in a carbon-nanotube double quantum dot. As

sketched in Fig. 1, an attractive nearest-neighbor interaction

U < 0 can be generated in this system with the help of a polar-

izable “medium” consisting of just one electron in an auxiliary

nearby double quantum dot (called “polarizer”). In general,

the tunability of the interaction opens up new possibilities for

quantum transport through such unconventionally correlated

1See also remarks at Fig. 11 of the supplement of [31].

systems, either in the form of quantum dots [1–3] or ballistic

one-dimensional wires [7]. Early theoretical work pointed

out interesting signatures of strong attractive interaction in

the stationary transport through a single-level dot [8,9] with

possible interesting applications [10,11] due to a charge-Kondo

effect [12]. Transport measurements on top-down realizations

have indeed demonstrated several of these effects [1–3]. Much

of the possibilities extend to the double dot in the bottom-up

system of [5] since it is formally similar to a single quantum

dot with a pseudospin instead of a real spin.

FIG. 1. A double-dot system (horizontal, black) with a nearby

double-dot polarizer (vertical, green). Whereas the system can host

either 0, 1, or 2 electrons with interaction V , the polarizer contains

only one electron that can be excited at an energy cost P . The system

acquires effective attractive electron interaction when the addition of

the second electron costs less energy than adding the first. This is

realized here for P > V : when the first electron excites the polarizer

[beyond the orbital energy ε defined in Eq. (11)], the second electron

only needs to overcome the lower electron repulsion energy.
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This paper sets out to explore the signatures of attrac-

tive interaction in quantum dots probed by slow driving

of two parameters. In general, this time-dependent driving

leads to an additional contribution to charge transfer called

pumping which is a more sensitive experimental probe than

stationary dc transport measurements. Moreover, we focus

on the simpler setting of weak coupling, high-temperature

transport. The theoretical and experimental works cited above

focused on higher-order effects that rely on moderate to strong

tunnel coupling. However, it was demonstrated in [3] that

the measured signatures of attractive interaction in the high-

temperature regime are dominated by first-order effects with

an interesting crossover to the second-order dominated low-

temperature regime.2 Pumping effects relying on such first-

order processes in quantum dots [13–15] and other strongly

interacting open quantum systems [16,17] have been analyzed

in great detail, addressing charge, spin, and heat transport.

For example, qualitative features of the pumping-response

probe level degeneracies [18,19], in contrast to stationary dc

transport, which are different for a single-level quantum dot

and for the double dot of [5] due to the latter’s additional

degrees of freedom. Still, such pumping measurements impose

only mild experimental requirements: the driving only needs

to be sufficiently fast to generate a small effect that can be

extracted experimentally by using lock-in techniques and by

exploiting its geometric nature.3 Apart from this, the driving

can be slow in the sense that many electrons are transferred

through the system per driving cycle.

As we show in this paper, static attractive interaction

introduces intriguing possibilities for a mechanism of pumping

using first-order tunnel processes which seems not to have been

investigated. In general, to achieve pumping, one might think

that it is required to have the coupling as one of the driving

parameters to “clock” electrons through the system. However,

this is not necessary [20,21]: even with fixed coupling driving

any two parameters will do in principle. In particular, the

most natural control parameters of a single-level quantum dot,

the level position (through the gate voltage) and the transport

window (through the bias voltage) already result in pumping

effects [18,19,22]. For this a nonzero static electron interaction

is necessary and repulsive interaction was shown to induce

pumping [18,19,22] similar to earlier observations in other

systems [16] (cf. also [17]). It is thus a natural question as to

whether static attractive interaction also enables such pumping

for fixed coupling.

Moreover, studies of electron pumping have so far paid

little attention to time-dependent driving of the interaction

U itself, arguably due to a lack of experimental motivation

in electronic systems. The above-mentioned experimental

breakthroughs now provide a strong impetus to reconsider even

basic pumping effects in the presence of freely tunable and

negative electron-electron interaction. In particular, pumping

resonances associated uniquely with driving U are of interest

since their observation provides a strong indication that one

has control over the interaction and thereby gains access to the

mechanism that generates U .

2See discussion of measurements and theory in Fig. 3 of [3].
3See, for example, Appendix C of [22] for a detailed discussion.

The resulting variety of pairs of driving parameters of a

quantum dot defines several experimental driving protocols.

A key result of the paper is that we map out which possible

pumping mechanisms govern the pumping responses for all

these protocols. In particular, we indeed identify mechanisms

that are unique to driving the interaction, i.e., they cannot

be realized otherwise. Because of our interest in driving the

interaction, we are guided by the double-dot system of [5] for

which the mechanism behind the tunability of interaction is

particularly simple. However, we will also study the single-dot

system in detail as it is interesting in itself and provides a very

useful guide to that more complicated double-dot problem.

The outline of the paper is as follows: In Sec. II we describe

the single- and double-dot models. For the latter system we

review the generation of attractive interaction by the excitonic

mechanism identifying which experimental parameters can

drive the interaction. In Sec. III we set up a master equation,

transport current formulas, and an adiabatic-response approach

which are used to compute the pumping response. We make

explicit use of the geometric formulation of Refs. [22,23] by

expressing the pumped charge in a curvature tensor and give

explicit formulas for the single- and double-dot models. The

discussion of Sec. IV focuses on the pumping response of the

single-orbital quantum-dot model.

II. QUANTUM-DOT SYSTEMS WITH ATTRACTIVE

AND TUNABLE INTERACTION

A. Single quantum dot with spin

The main focus of our study in Sec. IV is the single quantum-

dot model

H = ǫ
∑

σ=±
Nσ + UN+N− (1)

with the orbital energy controlled by the gate voltage ǫ =
µ − Vg. Here, σ = ± labels the electron spin and Nσ = d†

σdσ

where d†
σ is the electron creation operator. We are particularly

interested in the situation where the interaction U is negative

or tunable. The coupling to electrodes to the left (α = L) and to

the right (α = R) is described by a tunnel Hamiltonian model

H T =
∑

ασk

√

Ŵα/ναd†
σ ckασ + H.c., (2a)

H α =
∑

kσ

ωαkc
†
kασ ckασ , (2b)

assuming energy- and spin-independent tunnel rates Ŵ
α with

constant DOS να and electron operators ckασ in electrode α.

The time-dependent particle current4 is defined to flow out of

reservoir α = L, R:

INα (t ) := −
d

dt
〈Nα〉(t ), Nα :=

∑

σk

c
†
kασ ckασ , (3)

where Nα is the charge in reservoir α. We assume a sym-

metrically applied bias, entering through the electrochemical

4Since below we consider period-averaged pumping transport,

screening currents need not be discussed due to the invariance of

charge measurements under recalibration of the meter (see [19,22]).
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potentials of the electrodes

µL = µ + 1
2
Vb, µR = µ − 1

2
Vb, (4)

each of which is in a grand-canonical equilibrium state with

temperature T . Positive source-drain bias Vb > 0 drives a dc

particle current L → R. Pumping is achieved by driving any

pair of the full set of parameters ǫ, U , Vb, and Ŵ
L or Ŵ

R, leading

to the variety of pumping responses discussed in Sec. IV.

B. Double dot with tunable interaction

Orbital pseudospin. The experimental setup in [5], con-

sisting of a double dot influenced by a polarizer, can be

described by a very similar model. Let us first focus on the

double dot only (the system). We assume that this double

dot has a (infinite) dominant intradot repulsion, such that

each system dot is constrained to be at most singly occupied,

Nσ = Nσ↑ + Nσ↓ � 1. Here, we label the two dots σ = ± and

denote their occupations by

Nσ =
∑

τ

d†
στdστ . (5)

This expression includes a sum over the real spin τ =↑,↓
and denotes the electron operators of dot σ by dστ . The

infinite intradot repulsion implies the constraint5 N2
σ = Nσ +

2Nσ↑Nσ↓
!= Nσ . With this understood, the same model (1) that

describes the single dot also describes the double dot, assuming

as in the experiment that there is no interdot tunneling (only

interdot capacitive coupling). Thus, the only difference to the

single dot is that the charge operators are replaced by Eq. (5),

and the coupling Hamiltonian (2) requires a corresponding

adjustment (see below). It is important to note that in the

mapping between the two models the orbital index (not

the real spin) of the double dot plays the role of the spin in

the single dot, which are therefore both labeled by σ = ±.

Excitonic mechanism. Without the polarizer, the interdot

interaction described by Eq. (1) is repulsive, U > 0. We now

review how due to the presence of the polarizer a tunable

effective interaction U is obtained, following the supplement

of [5]. To this end, we start from a model of the system plus

polarizer as in Fig. 1:

H SP = εs(N+ + N−) + V N+N− (6a)

− 1
2
P (N1 − N2) (6b)

+W1(N+ + N−)N1 + W2(N+ + N−)N2. (6c)

The term (6a) describes the double-dot occupations N±
[Eq. (5)] with single-dot energies ǫs and a “bare” interdot

repulsion V > 0. The next term (6b) describes the polarizer

dots with occupations N1 and N2, and Eq. (6c) describes the

repulsion between electrons on the system and the polarizer.

The two dots of the polarizer together contain just one electron,

N1 + N2 = 1. Although they are coupled by weak tunneling

(relative to their detuning P ), the effect of this coupling on the

polarizer spectrum is not relevant for the present discussion and

it can be left out. Moreover, the polarizer’s energy difference

5This breaks the electron-hole symmetry in the double-dot system.

is tuned to P > 0 such that its electron resides in dot 1 near the

system when the latter is empty (N+ = N− = 0). Since dot 1

(2) of the polarizer is closest to (furthest from) the system we

assume different repulsive Coulomb energies W1 > W2 > 0.

In the absence of system electrons, P is the energy change

when the polarizer flips from (N1, N2) = (1, 0) to (0,1).

However, with electrons present on the system the repulsive

interactions W1 and W2 modify this change in energy. To see

this clearly, we rewrite Eq. (6) using N1 + N2 = 1 as

H SP =
[

εs + 1
2
(W1 + W2)

]

(N+ + N−) + V N+N− (7a)

+ 1
2
[−P + (W1−W2)(N+ + N−)](N1−N2). (7b)

We see that once the spatial gradient of the interaction across

the polarizer W1 − W2 := C exceeds the potential gradient P

of the isolated polarizer, the following happens: after adding

the first electron to the system the polarization energy is effec-

tively inverted [Eq. (7b)], thereby attracting the next electron

to the system. To eliminate the polarizer degrees of freedom,

we note that for N+ + N− = 0, 1, 2 the lowest-energy state

has N1 − N2 = 1,−1,−1, respectively, as indicated in blue

in Fig. 2. This can be summarized as N1 − N2 = 1 − 2(N+ +
N−) + 2N+N−. Imposing this nonlinear constraint on Eq. (7)

together with N2
σ = Nσ gives an effective model for the system

only (ignoring a constant −P/2):

H =(εs + P + W2)(N+ + N−) + (V − P )N+N−. (8)

Thus, we have obtained an effective model of the form (1) with

charge operator (5), but now with a renormalized interaction

and orbital energy

U := V − P, ǫ := εs + W2 + P, (9)

respectively, due to the presence of the polarizer.

In Fig. 2, we illustrate this mechanism in terms of many-

body energies of system plus polarizer. These are the eigen-

values of H SP which we can write as

H SP = ε(N+ + N−) + V N+N− (10a)

+C(N+ + N−)N1 + PN2, (10b)

where, compared to Eq. (7b), we omitted a constant −P/2.

For this purpose, we extract the polarization energy P from

the renormalized single-electron energy ǫ [Eq. (9)] leaving a

single-electron energy

ε := εs + W2. (11)

The essence of the mechanism as sketched in Fig. 1 is then

understood by just considering the blue states in Fig. 2. When

the first electron enters the system, the lowest-energy state is

reached when the polarizer is flipped. This implies that the

second electron does not need to pay the energy P and enters

more easily than the first one. This effective energy gain −P

counteracts the repulsive interaction V with the other system

electron and is responsible for the tunable interaction.

Figure 2 makes clear that the elimination of the polarizer

is valid if the capacitive-energy gradient is large, C := W1 −
W2 ≫ P . In this case, there is a broad regime in which P can

be varied in order to tune the effective interaction U to either

sign. The experiment in [5] demonstrated that this regime of

attractive U < 0 can indeed be achieved when the polarizer is
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FIG. 2. Many-body energies of system plus polarizer, i.e., eigenvalues of H SP [Eq. (10)], as function of the capacitive-energy gradient

C = W1 − W2 for different polarization energies P in (a)–(c). For each charge multiplet of the system (pairs of blue and black lines) there are

two configurations of the polarizer as sketched on the left, where configurations with one electron in the right dot of the system are not drawn

for simplicity. The blue configurations are accounted for in the effective Hamiltonian (1) = (8) and the gray arrows denote the electron-addition

energies that were indicated in Fig. 1. The red dashed line indicates twice the single-electron energy ǫ + P . Relative to this, the energy of the

two-electron state (uppermost blue line) shows whether the interaction (red arrow) is attractive (a), zero (b), or repulsive (c). The sketch shows

that by tuning P with respect to V one inverts the effective interaction U = V − P without a crossing of energies as long as C ≫ P . This

should not be confused with the crossing of discrete electrochemical potentials which does take place in (b) where ǫ + P = ǫ + V . For this

work we assume C to take values at the horizontal position of the gray arrows.

brought close enough to the system, the latter being realized

in a planar geometry. Note that C does not contribute6 to the

expression for U .

Figure 2 furthermore highlights that the inversion of U does

not entail an energy-level crossing in the full model of double-

dot plus polarizer, even though additional energies (ε + P

and ε + V ) do cross. Therefore, the effective low-energy

description (1) remains valid in the presence of time-dependent

driving when no transitions are induced into states that were

eliminated. The additional condition for the driving frequency

is� ≪ P . This is already implied by the slow driving condition

� ≪ Ŵ when we require all states on the system plus polarizer

to be quantized T ≪ Ŵ ≪ P, V .

Finally, we note that the same mechanism in principle can

be used to achieve negative U in the single dot. Indeed, using

the model (1) with Nσ =
∑

τ d†
στdστ → d†

σdσ the above steps

show that a finite “bare” intradot repulsion term V ′N+N+
is renormalized to U = V ′ − P under the same conditions

(C ≫ P ). Experimentally, the polarization energies P attained

so far in the bottom-up approach of [5] suffice to invert the

weaker interdot interaction energy scale V in carbon nanotube

double dots, but further progress is required to achieve the

larger intradot scale V ′ in these systems. Furthermore, in top-

6When deriving Eq. (8) the large gradient W1 − W2 cancels out

in the contribution to the interaction terms ∝N+N−, even though it

does modify the effective potential terms ∝N+ + N− via ǫ = ε +
P + (−C + W1 + W2)/2 = ε + P + W2.

down fabricated quantum dots [1–3] the effective interaction

of a single dot can already be made negative using a different

mechanism.

Coupling to electrodes and transport quantities. Although

contacting the double dot may be challenging in the original

setup of [5], one may envisage similar structures, for example

implementing the double dot in two parallel nanotubes in close

proximity, each tube containing one quantum dot. Regardless

of the details, a relevant tunneling model extending Eq. (2) is

H T =
∑

ασk

√

Ŵα/να
∑

τ

d†
στ ckατ + H.c., (12a)

H α =
∑

k

ωαk

∑

τ

c
†
kατ ckατ , (12b)

again with energy- and real spin- (τ ) independent tunnel rates.

See Fig. 3 for the considered schematic setup. For simplicity,

these rates are additionally assumed7 to be the same for each

of the two dots: Ŵ
α is σ independent. The electron operators

of the dot σ (reservoir α) are denoted by dστ (ckατ ) where

τ is the real spin. Importantly, Eq. (3) still holds when the

electrode charge operator is replaced by Nα =
∑

kτ c
†
kατ ckατ

and accordingly the coupling (12) is used instead of Eq. (2).

7Lifting this simplifying assumption requires a full account of orbital

(pseudospin) polarization effects which is interesting but beyond the

scope of this study.
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FIG. 3. Left panel: single dot with spin σ = + (indicated by ↑)

which is connected to electrodes α = L and R by tunnel junctions.

Right panel: double dot with dot occupation of dot σ = + indicated

by the black filling, connected to a common set of electrodes on either

side. The two dots are only coupled by electrostatic interaction, not by

tunneling. These are schematic transport setups (experimental details

may differ), the key point being that a contacted planar quantum-dot

system can be approached by the polarizer transverse to it to modify

the electron interactions. Carbon-nanotube systems used in [5] are

particularly suited since the electronic states are exposed on the tube

surfaces.

The current INL (INR ) now denotes the total current out of the

left (right) measured electrode (see Appendix B). Note that

the analogy between orbital index σ in the double dot and spin

index σ is not preserved8 by the coupling [compare Eq. (2)

with (12)]. Below, we determine the resulting difference.

Driving the effective single-dot parameters. Finally, we

address how the parameters in the effective model (8) can be

driven directly through the gate voltages applied to the system

double dot and separately to the polarizer double dot.

(i) Driving the polarizer’s energy P affects both the effec-

tive level ǫ and U [Eq. (9)]. To drive U independently, one

thus needs to compensate the side effect of P on ǫ by driving

the gates on the double dot. As shown in Fig. 2, U can be

driven between positive and negative values without having

a crossing of energy levels of the system plus the polarizer

(which would otherwise invalidate our effective description of

just the system). By slowly driving the parameter P one does

not excite the states that are integrated out.

(ii) Although driving of the tunnel coupling strengths can

in principle be done by modulating appropriate gate voltages,

the independent driving of Ŵ
L or Ŵ

R seems, however, more

challenging. Because of its conceptual simplicity and quali-

tatively different impact, we will nevertheless analyze this in

some detail in Sec. IV.

(iii) Finally, driving the spatial separation between polar-

izer and the system is equivalent to driving the gates controlling

the system double dot. In particular, modulating the distance

would change the Coulomb repulsion energies W1 and W2 in

Eq. (6). Since C = W1 − W2 is required to be large for the

effective description to hold, the quantities W1 and W2 never

appear in the interaction U in the effective description as we

noted above.

8In general, this leads to level renormalization effects, even in the

leading-order coupling considered here, which are well known [32]

to cause observable precession effects in quantum-dot spintronics

[33–35]. In this study, these are not relevant due to our assumption of

equal couplings to the shared reservoirs.

III. TRANSPORT THEORY OF PUMPING

A. Master equation

We consider the regime where the coupling to electrodes is

weak and temperature is still relatively high, Ŵ
α ≪ T . In this

case, the transport in our model can be described with the help

of a master equation for the probabilities ρN of having N elec-

trons on the quantum-dot system and an accompanying current

formula, all to first order in the tunnel coupling strength.9 These

form a closed set of equations making reference to neither

the (pseudo)spin σ (in both models) nor the real spin τ (in

the double-dot model). Physically speaking, this expresses

that information about these quantities is inaccessible. In

Appendices A and B we show that this implies that the relevant

part of the density operator ρ lies in a linear subspace

|ρ) = ρ0|0) + ρ1|1) + ρ2|2), (13)

spanned by a basis of three operators denoted |0), |1), and |2)

which represent definite charge states. The master equation

reads as

d

dt
|ρ(t )) = W |ρ(t )), (14)

with W =
∑

α=L,R W α , and the current formula for transport

quantities Nα is

INα (t ) = (N |W α|ρ(t )). (15)

Here and below, we use supervector notation where |B ) = B̂

and (A|• = TrÂ†•, where • denotes any argument such that

(A|B ) = TrA†B. The rates W α describe the system coupled to

one electrode α only. For the single-level model we obtain

W α =







−2W α
10 W α

01 0

2W α
10 −W α

01 − W α
21 2W α

12

0 W α
21 −2W α

12






, (16)

where the individual rates are expressed using the Fermi

function f (x) = (ex + 1)−1 and j = 0, 1:

W α
1,2j = Ŵ

αf ((−1)j (ǫ + jU − µα )/T ), (17a)

W α
2j,1 = Ŵ

αf ((−1)j+1(ǫ + jU − µα )/T ). (17b)

Importantly, the double-dot model is described by the

same equations when the density operator is expressed by an

expansion (13) in a corresponding basis (see Appendix B). The

only difference with the single dot resides in the degeneracy

factors in the first two columns of the rate matrix:

W α =







−4W α
10 W α

01 0

4W α
10 −W α

01 − 2W α
21 2W α

12

0 2W α
21 −2W α

12






. (18)

The difference in degeneracy factors, in contrast to the explicit

spin, is accessible via pumping spectroscopy.

9In the following, we always assume that U/T is small enough such

that even in regions in which the tunneling rates are exponentially

suppressed, the second-order rates can still be neglected compared to

them. This will be particularly relevant for attractive interaction.
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B. Adiabatic response

Driving parameters. The previous section established that

all parameters of a double-dot system can be driven in

time through applied voltages. The natural regime for time-

dependent spectroscopy is the limit of slow driving Ṙ ∼
�|�R| ≪ Ŵ in which the transport current acquires an ad-

ditional pumping contribution. The driving parameters

R =
[

ǫ − µ

T
,
Vb

T
,
U

T
,
Ŵ

R

ŴL
, Ŵ̄

]

(19)

affect the system through the rate matrices W α [Eq. (18), resp.

(16)]. All parameters are dimensionless10 and contribute to

pumping, except for the last one Ŵ̄ :=
√

ŴLŴR.

Pumping response: Geometric curvature. To determine the

measurable pumping effect, we employ the adiabatic-response

approach to compute the time-dependent solution for ρ(t ) and

the resulting pumped charge [13] in the limit of slow driving.

In particular, we use the geometric formulation of [19,22,23],

which allows for a clear comparison with other approaches

(such as FCS pumping [16,24] and Kato projections [25,26]

(cf. also [27])). The present approach is, however, quite

straightforward. We first determine the density operator |ρ i) in

terms of the kernel W =
∑

α W α from the stationary master

equation (14) for fixed parameters, 0 = W |ρ i). Inserted into the

current formula (15), this gives a nongeometric instantaneous

transport of charge

�Nα,i =
∫ T

0

dt (N |W α|ρ i) (20)

which is not discussed further (since it can be experimentally

subtracted). Next, we determine the adiabatic response ρr =
W−1| d

dt
ρ i), where W−1 is the pseudoinverse. This is the

leading-order nonadiabatic correction, i.e., the contribution

linear in the driving velocity dR(t )/dt . It enters the additional

geometric pumping contribution to the transferred charge, of

interest here, caused by the nonadiabatic “lag” of the system:

it can be written as an integral of a geometric curvature over

the surface bounded by the driving cycle C traversed in the

plane of the two driven parameters (Rk, Rl ):

�Nα =
∫

dS F α
Rk ,Rl

. (21)

The pumping curvature is unlike11 well-known adiabatic

Berry-type curvatures that are often discussed. It instead

10For compactness of notation, we will occasionally drop the

normalization denominators as well as the constant µ. Whenever we

consider a driving parameter, we however always intend the respective

component of (19).
11Although the pumped charge �Nα can be expressed as a proper

geometric phase, it is not simply equal to a Berry phase. This geo-

metric phase reflects the invariance of the measurement transported

charge under parametrically time-dependent gauge transformations

of the charge observable: pumping is geometric because the charge

meter can be physically recalibrated or gauged [22,23].

reads as

F α
Rk ,Rl

= (∇�
α| × |∇ρ i)kl (22a)

:= (∇k�
α|∇lρ

i) − (∇l�
α|∇kρ

i), (22b)

where ∇k := ∂/∂Rk . It combines the response of the states

and the response of the transported observable (charge) that is

measured externally. Similar responses were first discussed

for nonlinear dissipative systems by Ning and Haken and

by Landsberg (see the reviews [24,28,29]. Here, (�α| =
(N |W αW−1 is a charge-response covector [19] characterizing

the nonadiabatic effect (called “adiabatic response”) on the

external observable that is transported through the system in

a nonequilibrium stationary state. An important consequence

of (22) becomes visible already at this stage, and motivates

our parametrization (19) of the tunnel rates by their ratio and

geometric mean Ŵ̄. The geometric mean cancels out in the ratio

W αW−1 since both W α and W are proportional to Ŵ̄:

Ŵ
L = Ŵ̄

√

ŴL

ŴR
, Ŵ

R = Ŵ̄

√

ŴR

ŴL
. (23)

The curvature only depends on the coupling asymmetry.

Driving protocols for geometric pumping. Selecting a pair

of parameters (Rk, Rl ) from the list (19) to be modulated

defines an experimental driving protocol for which the mea-

sured response is given by the pumping formula (21). The

prime quantity of interest is thus the pumping curvature (22)

because it contains the full information about the pumped

charge for any driving curve C . Experimentally, the curvature

can be extracted by measuring the pumped charge from small

driving cycles only, a method that we call geometric pumping

spectroscopy [18,19] (extending the well-known nonlinear

dI/dV spectroscopy). In this limit, the pumped charge equals

the curvature F α[R∗] at the working point (denoted R∗) × the

driving-parameter area π |�R|2 (for a circle of radius �R). As

we will illustrate in Sec. IV C, studying the complete profile

of the curvature in the driving parameter plane, its nodes and

sign changes, allows one to directly infer when and how this

monotonic increase with �R of the experimental pumping

signal �Nα breaks down.

C. Explicit curvature formulas

Curvature for the single dot. For the single-dot model, the

curvature F α can be computed most easily by noting [22] that

the matrix W α has three eigenvalues, one of which governs

the decay of an excess charge on the quantum dot [30]. This

eigenvalue can be written as −wα where

wα =
∑

N=0,2

W α
1N (24a)

= Ŵ
α[f α ([ǫ − µα]/T ) + f α (−[ǫ + U − µα]/T )]

(24b)

is the charge relaxation rate. It determines how fast the charge

state N = 1 is reached due to the coupling to a specific

electrode α = L or R, irrespective of the initial state of the
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dot (N = 0 or 2). The pumping curvature (22) simplifies to

F α
Rk ,Rl

=
{(

∇
wα

∑

α wα

)

× ∇〈N〉
}

kl

, (25)

where 〈N〉 := (N |ρ i) = TrN̂ρ i is the charge on the quantum

dot in the parametric stationary state. Total charge conservation

is expressed by
∑

α (N |W α = (N |W and implies together with

W |ρr)=0, that we can antisymmetrize in α, F := (F R−F L)/

2 = F R and obtain12

FRk ,Rl
:=
{

1

2

(

∇
wR − wL

wR + wL

)

× ∇(〈N〉 − 1)

}

kl

. (26a)

Equations (25) and (26a) are the key formulas13 that allow

the origin of any nonzero value of the curvature to be clearly

understood just by plotting the two scalar quantities under the

gradients [19]. Namely, the pumping response is determined

by the parametric charge polarization taken relative to N = 1:

〈N〉 − 1 =
∑

α

(

W α
10 − W α

12

)

∑

α

∑

N=0,2 W α
1N

(26b)

and the asymmetry of the charge-relaxation rates

wR − wL

wR + wL
=
∑

N=0,2

(

WR
1N − WL

1N

)

∑

α

∑

N=0,2 W α
1N

. (26c)

Note that in both factors the magnitude of these rates is

irrelevant. Thus, even when transport currents are small, it is

possible to pump charge, although one must keep in mind the

slow-driving condition that the driving frequency � must be

kept small relative to these rates. That the factor (26b) ignores

spatial asymmetry (L vs R) whereas the factor (26c) ignores

charge asymmetry (N = 0 vs 2), correlates with their very

different sensitivity to the bias and and gate voltage which will

be crucial below.

In a way, the ratio (26c) quantifies how the parameters

modulate the “effective coupling” to the external electrodes.

Importantly, without interaction (U = 0) the relaxation rates

(24b) reduce to wα = Ŵ
α and all dependence on parameters

other than the “bare” couplings cancels out. We also note

that this factor may seem to be only quantitatively important.

For example, for repulsive interaction and fixed coupling it

was observed [18] that the geometric pumping spectroscopy

can be qualitatively understood by finding the crossings of

resonance lines in parameter space where the occupations

of the quantum-dot states change, as captured by the factor

〈N〉 − 1 in Eq. (26a). We will see that this intuitive rule is in

a way fortuitous: we find that for fixed attractive interaction

there are pumping mechanisms which cannot be understood,

even qualitatively, this way and require explicit consideration

of the factor (26c).

12The subtraction of a constant 〈N〉 → 〈N〉 − 1 under the gradient

in Eq. (26a) is motivated by the symmetric role of the N = 0 and 2

states in Eq. (26b) which become crucial later on [cf. Eq. (36) below].
13Equation (26a) was correctly derived in [22] [Eqs. (D12) and

(D14a)], but unfortunately the final result (D19) was written incor-

rectly. Also, the curvature was not studied for attractive or driven

interaction U which is of interest here.

Effective parameters and pumping mechanisms. While the

parameters (19) defining the driving protocols are dictated by

experimental considerations, the form (26a) of the curvature

as a combination of transition rates W α
N ′N actually suggests

that different effective parameters govern the response. Except

for Ŵ
R/ŴL, all parameters enter the transition rates via the

arguments of Fermi functions. Naively, one then expects a

pumping response only in regions, where some Fermi functions

are not constant (gradient nonzero). Their arguments are

then effective parameters modulated around the well-known

resonance conditions

ǫ − µR/L = 0, (27a)

ǫ + U − µR/L = 0. (27b)

Interestingly, we will find that this simple picture breaks down

in the case of attractive interaction. To then find the two

effective parameters, which are always needed, is the main

subject of Sec. IV. We call any such combination of two

effective parameters a pumping mechanism. Each mechanism

corresponds to a configuration in Fig. 4, the value of the

coupling being irrelevant.

Since the effective parameters (to be found) are a com-

bination of the experimentally accessible parameters (19),

one mechanism can relate the pumping response of different

driving protocols to each other. For example, we will show

[Eq. (43)] that close to the working point associated with the

mechanism that we label A2,

FU,Vb
(ǫ) ≈ MA2

[ǫ + U − µ,Vb] ≈ Fǫ,Vb
(U ). (28)

Here, MA2
is the curvature that one would obtain from (22),

if the effective parameters of mechanism A2 (indicated in the

square brackets) would be chosen as driving parameters. This

relates driving of U and Vb at fixed ǫ directly with driving of ǫ

and Vb at fixed U in the vicinity A2 (see Fig. 4). We stress that

this is not a linearization of the curvature around the working

point, but describes its full dependence in the vicinity.

Importantly, close to another working point the relation

between the same two curvature components, and thus two

experiments, may be completely different or even absent. Since

in this paper we also allow the interaction U to be one of the

driving parameters, it is a key question as to whether this entails

a distinguished mechanism of charge pumping or whether it can

always be considered as being equivalent to driving of another

parameter as the gate voltage in Eq. (28).

Explicit formula for the double dot. For the double-dot

model whose rate matrix W α is given by Eq. (18) the simple

trick of [22] fails because more than one eigenmode plays a

role due to the breaking of electron-hole symmetry (infinite

intradot repulsion) Also, the eigenmodes are no longer simply

related to the charge covector (N |. Absorbing all degeneracy

factors into rates W̄ij indicated by an overbar, we derive in

Appendix B the general result

F α
Rk ,Rl

=

{

∇[�0 �2] × ∇

[

ρ i
0

ρ i
2

]}

kl

(29)
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U > 0

E

µL µR

0

1 ← 2

1 ← 0

E

µL µR

0
1 ← 2

1 ← 0

A1/2

E

µL µR

0

1 ← 2

1 ← 0

E

µL µR

0

1 ← 2

1 ← 0

B+/−

U = 0

E

µL µR

0
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E

µL µR

0

1 ← 0

1 ← 2

E

µL µR

0

1 ← 0

1 ← 2

E

µL µR

0

1 ← 0

1 ← 2

D
+/−
1 D

+/−
2

U < 0

E

µL µR

0

1 ← 0

1 ← 2

C

E

µL µR

0

1 ← 2

1 ← 0

E

µL µR

0

1 ← 2

1 ← 0

B+/−

FIG. 4. Electrochemical potential configurations for the mechanisms of pumping discussed in the paper. Every configuration defines two

linearly independent, effective parameters that are zero in the shown configuration. A mechanism can thus be specified by the sketched conditions

on ǫ, Vb, and U , where µL = µ + Vb/2 and µR = µ − Vb/2 with constant µ. A mechanism is well separated from other mechanisms when

these conditions differ by more than the scale of thermal broadening (not indicated). By contrast, driving the coupling Ŵ
R/ŴL is never equivalent

to driving any noncoupling parameter and thus can by definition not access any of the mechanisms associated with the shown configurations.

We stress that in all cases, the shown configurations are necessary, but not sufficient conditions for pumping. As an example, B± does not lead

to pumping for U < 0 while C does.

expressed in the independent components of the instantaneous

stationary state and the response covector

[

ρ i
0

ρ i
2

]

=
1

W̄10W̄12 + W̄10W̄21 + W̄01W̄12

[

W̄12W̄01

W̄10W̄21

]

, (30a)

[

�0

�2

]

=
1

W̄10W̄12 + W̄10W̄21 + W̄01W̄12

×

[

−
(

W̄ α
10 + W̄ α

01−W̄ α
21

)

W̄12−
(

W̄ α
10 + W̄ α

12

)

W̄21
(

W̄ α
21 + W̄ α

12 − W̄ α
01

)

W̄10 +
(

W̄ α
10 + W̄ α

12

)

W̄01

]

.

(30b)

Further simplifications can be made by evaluating the gradi-

ents, antisymmetrizing (see Appendix B), and finally using that

the rates without degeneracy factors sum to constants W α
ij +

W α
ji = Ŵ

α . For the double dot the result remains unwieldy. The

formula (30) also applies to the single-level model when the

corresponding rates (16) are substituted: only then it simplifies

to the much simpler result (25).

IV. PUMPING RESPONSE: SINGLE DOT

We now turn to the main results of the paper, focusing

on the role of the tunable interaction as a static parameter

which can be negative or as a parameter that is driven, while

using the familiar case of static repulsive interaction U as

a reference. To identify distinct effects, we work out a map

containing all possible situations and analyze them carefully.

In Fig. 4 we sketch the electrochemical potential diagrams for

all pumping mechanisms as introduced in Sec. III. Which of

these mechanisms is accessed in a given driving protocol is

summarized in Table I.
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TABLE I. Driving protocols with static couplings Ŵ
R/ŴL and the

accessed pumping mechanisms (sketched in Fig. 4). Blank cells in

certain columns mean that the mechanism of the respective column

is not accessible in the driving protocol of a given row. The signs and

factors 2 and 1

2
indicate relations between curvature components of

the type (28) that are discussed in the main text.

Driven Constant

(i) (Vg, Vb) U > 0 A1 A2 B±

U = 0

U < 0 C

(ii) (U, Vg) Vb > 0 B+ −2D+
1 2D+

2

Vb = 0

Vb < 0 −B− 2D−
1 −2D−

2

(iii) (U,Vb) Vg > 0 −A2 − 1

2
B± D±

1

Vg = 0 1

2
C D±

1 D±
2

Vg < 0 1

2
C D±

2

From Table I one immediately sees that there are distinct

mechanisms both for driven (mechanism D) as well as for

constant attractive interaction (mechanism C), which are not

accessible using any driving protocol with static, repulsive

interaction U . Mechanism D is of interest since the experi-

mental detection of its pumped-charge signature provides a

strong indication that one has independent dynamical control

over the interaction in the engineered structure. Furthermore,

the table shows that in other situations, pumping by driving

the interaction can be due to the same mechanism as when

dealing with the static interaction (e.g., mechanism B). Finally,

since some of these mechanisms (B) are only available for

asymmetric tunnel coupling, we plot in the following all our

results for generic values of the ratio Ŵ
R/ŴL �= 1.

A. Coupling strength as one pumping parameter

We first consider driving protocols in which charge pumping

is achieved by choosing the coupling strength as one of

the pumping parameters.14 We discuss this class of driving

protocols separately since the coupling strength is the only

parameter that enters the transition rates linearly (compared

to all other parameters entering via Fermi functions). We will

here see that this leads to some fundamental differences in the

pumping features.

As a first example of this, driving both couplings does

not lead to any pumping response for any value of the other

parameters,

FŴL,ŴR = 0 always. (31)

The reason is that the geometric mean of the couplings Ŵ̄ =√
ŴLŴR [Eq. (23)] cancels out in the pumping curvature (22),

14As driving parameter, the tunneling coupling is doubly restricted:

the time-dependent values of the coupling should always remain less

than temperature T (weak coupling limit), while exceeding the driving

frequency � = 2π/T (slow driving).

even though it does modify15 the instantaneous response (20)

(not discussed). Therefore, driving both Ŵ
L and Ŵ

R amounts

to varying only a single effective coupling parameter Ŵ
R/ŴL

and thus no pumping is possible, regardless of the bias voltage

(both equilibrium and nonequilibrium) and the interaction U

(both attractive and repulsive). Therefore, in the following we

modulate one coupling strength and one further independent

parameter to achieve pumping.

1. Repulsive interaction U > 0.

In Fig. 5(a) we show the curvature as function of the driven

parameters, the coupling Ŵ
R/ŴL and the experimental gate

voltage Vg := µ − ǫ (incorporating the gate lever-arm factor).

This graphic representation is the only one that allows to obtain

the pumped charge just by drawing the driving cycle at a

working point and then computing the flux of Fǫ,ŴR through

the covered area.

The vertical stripes in the plot are a consequence of the

fact that the coupling asymmetry enters the transition rates

linearly and is therefore always a possible effective parameter.

In addition, it is however necessary to have a second effective

parameter. The four lines in the figure correspond precisely

to one of the resonance conditions (27) and thus indicate the

effective parameters.

This is verified in Fig. 7(a) where for a generic fixed value

of Ŵ
R/ŴL we plot the curvature as a function of the driven

parameter ǫ and the additional static parameter Vb. In contrast

to the “natural” way of plotting the curvature as function of the

driven parameters (Fig. 5), here it is easy to spot the familiar

resonance conditions and identify the mechanism at work: the

lines of nonzero curvature (blue) coincide with the lines where

the occupation changes, as one would measure by a stationary

dc spectroscopy (dI/dVb Coulomb diamonds). Related to this,

the curvature in Fig. 5(a) has the same sign for all Vg working

points, reflecting that the gate voltage always has the same

effect on the occupations, no matter what the other parameters

are: making Vg more positive always attracts charge to the dot

[see Fig. 6(a)].

Next, we show in Fig. 5(b) the curvature when driving

the bias voltage Vb (instead of ǫ) together with the coupling

Ŵ
R/ŴL. In this case, the vertical lines have alternating signs

(blue, red). As explained in Fig. 6(a), the sign changes

reflect that the qualitative effect of the bias voltage Vb in

comparison with the gate voltage Vg depends on the transi-

tion energy configuration which depends on other nondriven

parameters.

2. Attractive interaction U < 0

In the right panels of Figs. 5(a) and 5(b) we show the

corresponding results for attractive interaction (same strength

but opposite sign, U = −|U |). In contrast to the case U > 0,

for the first two driving protocols the response is nonzero only

at a single, thermally broadened vertical line ǫ − |U |/2 = µ.

For this line to appear at all, a second condition must be

15As a result, symmetric modulation of the couplings offers an

additional way to experimentally extract the pumping response (see

for a discussion Appendix B of [22].
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FIG. 5. Pumping curvatures as function of the driven parameters, the coupling Ŵ
R and one other parameter (Vg, Vb, or U ). All curvatures

and parameters are dimensionless. The dependencies on other static parameters are plotted in Fig. 7, taking Ŵ
R/ŴL = 1

2
[indicated by dashed

lines in (a) and (b)] or taking Ŵ
R/ŴL = 1

2
and U = 15T [indicated by the crosses in (c)]. (a) Curvature FVg,ŴR · Ŵ

L vs. coupling and gate driving

parameters for U > 0 (left) and U < 0 (right), (b) Curvature FVb,ŴR · Ŵ
L vs. coupling and bias driving parameters for U > 0 (left) and U < 0

(right), and (c) Curvature FU,ŴR · Ŵ
L vs. coupling and interaction driving parameter.
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E

µL µR

0

1 → 2

0 → 1

Vb

Vg

U

= µL

E

µL µR

0

VbVg

U

= µR

(a) U > 0

E

µL µR

0

Vb

Vb

Vg

Vg

U

= |U |/2, Vb = 0

(b) U < 0

FIG. 6. Effect of changing the gate, bias, or interaction parameter.

The vertical colored arrows show the direction in which parameters

of the same color will drag the indicated respective electrochemical

potential. The bent arrows indicate the resulting changes of occu-

pation. (a) Repulsive interaction: in the left configuration of (a),

increasing the bias and gate voltage both will tend to fill the dot, in

the right configuration the bias voltage tends to deplete the dot. This

is responsible for the sign change in the pumping response shown in

Figs. 5 and 7 when driving Vb. (b) Attractive interaction: equivalent

sketch for pumping configuration for attractive interaction. In both

(a) and (b), changing the interaction parameter has qualitatively the

same effect as changing ǫ ∝ −Vg or no effect at all.

satisfied,16 i.e., Vb = 0. These conditions correspond to the

configuration labeled C in Fig. 4. Notably, neither of them

is contained in Eq. (27). The reason for this is that attrac-

tive interaction suppresses all rates in the region around the

symmetry point.17 This renders the resonance conditions (27)

irrelevant and gives rise to effective parameters as will become

understandable from a later discussion (see Sec. IV B 2). This

is further underlined by the right panels of Fig. 7 where we

plot each curvature as function of another nondriven parameter

(instead of Ŵ
R/ŴL). In each case, the U < 0 response reduces

to a single thermally broadened point defined by the above two

conditions, in contrast to the results for U > 0 in the left panels

of Fig. 7.

Finally, the sign changes in the curvature when driving

Ŵ
R/ŴL and bias are a qualitative difference in the pumping

response when compared to driving Ŵ
R/ŴL and the gate

voltage. The reason is that, for attractive U < 0, bias and gate

driving cannot be mapped into each other [see Fig. 6(b)].

3. Driving the interaction U

Finally, we consider driving Ŵ
R/ŴL together with the

interaction U , which can be driven around both repulsive

16For all plots for U < 0 in the right panels of Fig. 5 we choose the

static parameters such that both conditions can be satisfied somewhere

in the driving plane. For other static parameters, the curvature in the

right panels is zero throughout the entire plane (not shown), in contrast

to the U > 0 cases on the left which generically show some response.
17Recall that we suppose the temperature to be large enough to

ensure that the exponentially suppressed first-order rates are still

larger than their second-order tunneling correction. In the figures,

we nonetheless chose relatively large values of |U |/T for a clear

comparison with the figures of the repulsive case. However, the

discussed effects dominate as long as |U | � T .

(U > 0) and attractive (U < 0) values [see Fig. 5(c)]. In these

cases, whenever there is a response, the driving of U can be

understood as effective driving of ǫ = −Vg, meaning that no

distinct mechanisms are accessed by driving U in addition to

Ŵ
R/ŴL. Qualitatively, this may be rationalized in terms of the

levels sketched in Fig. 6.

More quantitatively, for U > 0 the response is nonzero at

the single line defined by a condition µα = ǫ + U for either

α = L or R [Eq. (27)]. Close to each resonance line µα =
ǫ + U :

FU,ŴR (ǫ) ≈ Mα[ǫ + U − µα,ŴR/ŴL] ≈ Fǫ,ŴR (U ), (32)

where Mα is the curvature due to driving of the effective

parameters ǫ + U − µα and Ŵ
R/ŴL. The configuration cor-

responding to this single condition is not listed in Fig. 4 nor in

Table I. The different sign in Fig. 7(c) relative to 7(a) is merely

because we plot versus Vg = −ǫ. Note, however, that Fig. 7(c)

shows no response to U driving at the other two lines µα = ǫ,

whereas Vg driving clearly has an effect there [see Fig. 7(a)].

This can be understood from the transition energies sketched

in Fig. 6(a) and the fact that the effective parameter ǫ − µα is

independent of U .

For U < 0, there is again only a single resonance line at

ǫ − 1
2
|U | = µ, which, moreover, only appears if the additional

condition Vb = 0 is satisfied. This corresponds to the configu-

ration labeled C in Fig. 4. For |U | ≫ T , the response around

this line obeys

FU,ŴR (ǫ) ≈ MC′
[

ǫ + 1
2
U − µ,ŴR/ŴL

]

≈ 1
2
Fǫ,ŴR (U ). (33)

This relation reflects that the shared effective parameter that is

driven is now ǫ + 1
2
U − µ. Here, C′ indicates that the working

point is the one labeled C in Fig. 4, whereas the prime denotes

that the coupling is the second driving parameter [rather than

the bias Vb, as discussed later in Eq. (46)]. We stress that

Eqs. (32) and (33) are two different relations (governed by

two different mechanisms) between the same pair of curvature

components.

4. Summary

Although for repulsive interaction U > 0 driving the cou-

pling Ŵ
R is indeed a simple way to achieve pumping, for

attractive U < 0 the possibilities are limited by the effect

of the inverted Coulomb gap. This also applies when the

second driving parameter is the interaction U itself: whenever

this leads to an effect, it can be understood as an effective

gate driving which is subject to the same limitations. Driving

U is nevertheless interesting since it selectively picks out a

transition in the many-body spectrum of the dot (1 ↔ 2), which

the other considered parameter drives cannot do.

B. Driving two parameters for static coupling

We now turn to driving protocols in which the coupling ratio

Ŵ
R/ŴL is fixed. In all these cases, the pumping is localized in

thermally broadened regions around points (rather than around

lines as for coupling driving, see Fig. 5). This is interesting for

the purpose of geometric pumping spectroscopy [18,19,22].
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FIG. 7. Pumping curvatures of Fig. 5 as function of gate and bias voltage, i.e., these curvatures are plotted as function of one driven and one

static parameter, having fixed the driven Ŵ
R as indicated in Fig. 5. (a) Curvature FVg,ŴR · Ŵ

L vs. driven gate parameter Vg and static bias parameter

Vb, (b) Curvature FVb,ŴR · Ŵ
L vs. driven bias parameter Vb and static gate parameter ǫ, and (c) Curvature FU,ŴR · Ŵ

L vs. static parameters ǫ

and Vb.

1. Repulsive interaction U > 0

In Fig. 8(a) we show for reference the curvature when

driving gate (Vg = −ǫ) and bias voltage (Vb). The response

in the driving parameter plane is now restricted to thermally

broadened crossing points of the edges of the Coulomb

diamonds.

This has been related to the requirement of varying (at least)

two independent parameters to achieve pumping, in particular

two parameters that change the occupations [18,19,22]. Indeed,
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FIG. 8. Pumping response for gate and bias driving for static U > 0 (left) and U < 0 (right). (a) Curvature FVg,Vb
vs. gate and bias driving

parameters, (b) Occupation number 〈N〉 given by Eq. (26b), and (c) Ratio of charge-relaxation rates wR/(wR + wL) given by Eq. (26c).

using Eq. (26) we can separate the charge response into its two

factors which are plotted separately in Figs. 8(b) and 8(c).

Whenever both of these quantities depend on the same single

effective parameter (as happens at the edges between crossing

points), the gradients in the cross product are parallel and the

pumping curvature is zero. In the present case of fixed coupling

and repulsive interaction, the two gradients can be nonparallel

only at the crossing of two resonance lines (27) where two

effective parameters emerge. This is where the occupations

change, confirming the above intuitive explanation in this case.

The pumping response points come in pairs with opposite

sign. However, around each resonance point, the curvature
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has a definite sign (“monopolar” character) which has been

related to the change of the ground-state degeneracy in

Refs. [18,19,22]

2. Attractive interaction U < 0

The corresponding results for attractive interaction U < 0

are shown in the right panels of Fig. 8(a). The curvature

shows only a single, thermally broadened resonance when the

two conditions Vb = 0 and ǫ − |U |/2 = µ are satisfied. This

resonance is thus due to the C-mechanism. It has an internal

node where the curvature changes sign (“dipolar” character)

in the driving-parameter plane.

Importantly, the response in the right panel of Fig. 8(a)

cannot be understood, even qualitatively, based on the changes

in the occupations of the quantum dot [conditions (27)] plotted

in Fig. 8(b). There, the charge is shown to change only along a

vertical line ǫ − |U |/2 = µ with a kink that is discussed below.

However, there is no crossing of resonance lines (in the occupa-

tion) here. Furthermore, when at much larger bias |Vb| � |U |
there are such crossing lines where the charge changes, then

the pumping response is absent. This just means that the B

mechanism sketched for attractive U < 0 in Fig. 4 does not

lead to a pumping response in the single-dot model (cf. Sec. V).

Thus, the observations that C arises at all and B is missing are

surprising in view of the success of the intuitive explanation

for the U > 0 case. However, the origin of the pattern becomes

clear from the following analysis of the two factors plotted

in Figs. 8(b) and 8(c), of which the gradients need to be

calculated in order to obtain the pumping curvature [Eq. (26)].

Presence of a single C resonance for |Vb| ≪ |U |. Whereas

〈N〉 changes only at the approximately vertical line in Fig. 8(b),

the factor containing the charge relaxation rates wα addition-

ally changes at a horizontal line Vb ≈ 0 in Fig. 8(c). Both

factors have a fundamentally different dependence on gate and

bias voltage compared to the repulsive case (left panels in the

same figure). Close to the C point the two gradients are thus

orthogonal, leading to a resonance restricted by the thermal

energy in both the ǫ and V directions. These features of the two

factors are intimately tied to the strong attractive interaction

on the quantum dot as we explain in the following. In simple

terms, the attractive gap stabilizes charge statesN = 0, 2 on the

quantum dot. In the weak coupling, high-temperature regime

that we consider, a transition between the N = 0 and 2 states is

induced already by two sequential, first-order processes, both

of which are suppressed. What matters for 〈N〉 entering the

curvature formula (26) is only the balance between these two

competing charge transitions, irrespective of which electrode

induces them, which occurs when
∑

α

W α
10 =

∑

α

W α
12, (34)

and charge state 0 (2) is stable when the right (left) side domi-

nates. Because the attractive interaction with −U = |U | ≫ T

suppresses all rates that appear in the condition (34) up to

sizable bias |Vb| � |U | and gate 0 � ǫ − µ � |U |, the balance

is determined by the tails of the reservoir distribution functions.

The line at which 〈N〉 changes is thus given by the condition

ǫ −
1

2
|U | − µ = T

1

2
ln

Ŵ
LeVb/T + Ŵ

Re−Vb/T

ŴReVb/T + ŴLe−Vb/T
. (35)

This condition is only weakly bias dependent: the left-hand

side depends on µ only; the right-hand side introduces a

kink shifting the vertical line’s position to ǫ − 1
2
|U | − µ =

±T ln Ŵ
L/ŴR for |U | ≫ ±Vb ≫ T .

In contrast, the balance of charge relaxation rates, the other

factor in the curvature formula (26), strongly depends on the

bias. The charge relaxation rate wα , given by Eq. (24b), quanti-

fies how fast the state N = 1 can be reached due to a transition

induced by a specific reservoir α, irrespective of the initial state

of the dot (0 or 2). In this case, there is thus a balance when
∑

N=0,2

WL
1N =

∑

N=0,2

WR
1N . (36)

This yields a further condition: up to sizable bias |Vb| � |U |
and gate |ǫ − 1

2
|U | − µ| � |U |, this implies

Vb = ±T ln
Ŵ

L

ŴR
(37)

for ǫ− 1
2
|U |−µ≫T and ǫ− 1

2
|U |−µ≪−T , respectively.

Equations (35) and (37) explain why the naive conditions (27)

do not define the effective pumping parameters, which in this

case are ǫ − 1
2
|U | − µ and Vb.

A unique feature of the C resonance is that its curvature

profile is “dipolar.” This can now be understood as caused by

the competition between two suppressed processes, involving

the 0 → 1 or the 2 → 1 transition. However, for negative in-

teraction these transitions only become active together around

the point marked C. We either get a positive or negative

pumped charge to the left or right of this point when one of the

processes dominates. Which one dominates depends on both

the asymmetry in the couplings (ŴL vs Ŵ
R) and in the chemical

potential differences (ǫ − µ vs ǫ − |U | − µ). In order to fully

analyze the shape, we use that for −U ≫ T the curvature is

well described by18

Fǫ,Vb
= Ŵ

L
Ŵ

R

×
Ŵ

R sinh
(

ǫ+U/2−µL

T

)

+ Ŵ
L sinh

(

ǫ+U/2−µR

T

)

[

ŴL cosh
(

ǫ+U/2−µL

T

)

+ ŴR cosh(
ǫ+U/2−µR

T
)
]3

.

(38)

The asymmetry of the two-lobed resonance in Fig. 8(a) is due

the coupling asymmetry and can be quantified by the slope

of the nodal curve separating the two lobes: linearizing the

numerator of Eq. (38), using ǫ + U/2 − µα with α = L, R as

variables, shows that the slope of the tangent directly gives the

junction asymmetry:

∂ (ǫ + U/2 − µL)

∂ (ǫ + U/2 − µR)
= −

Ŵ
L

ŴR
. (39)

Absence of other resonances. It remains to explain why

the factors in the curvature (26) do not lead to any other

response than the one just described, in particular due to the

B mechanism. This is surprising since both occupations and

the ratio of charge-decay rates [Figs. 8(b) and 8(c)] show

18This expression also shows explicitly that the curvature indeed

only depends on the effective parameters ǫ − |U |/2 − µ and Vb.
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drastic changes around the B configuration and, moreover, for

U > 0 the corresponding B mechanism in Fig. 4 does lead to

pumping. However, when U < 0 the positions of ǫ and ǫ + U

are interchanged which causes the two factors in (26) to become

equal for µL > ǫ > ǫ − |U | > µR and Vb ≫ T :

wR − wL

wR + wL
≈

WR
10 − WL

12

WR
10 + WL

12

≈ 〈N〉. (40)

For opposite bias −Vb ≫ T they are opposite: for µR > ǫ >

ǫ − |U | > µL we find

wR − wL

wR + wL
≈

WR
12 − WL

10

WR
12 + WL

10

≈ −〈N〉. (41)

Thus, the gradients in Eq. (26a) are either parallel or antiparal-

lel and the response, given by their cross product (26a), remains

zero around the B points in Fig. 8(a).

3. Driving the interaction U

Finally, we discuss the response when driving the inter-
action together with a second parameter, as summarized in
Figs. 9 and 10. In addition to a number of features that can be
mapped to other driving protocols via the previously discussed
mechanisms, we importantly also find a mechanism that is
unique to interaction driving, the mechanism D. It is operative
at working points with zero interaction U = 0 and either
µL = ǫ or µR = ǫ, i.e., where the 0 → 1 and 1 → 2 transitions
are degenerate and both are resonant with either source or drain,
as sketched in Fig. 4. The two effective pumping parameters of
the D mechanism are thus ǫ − µα and ǫ + U − µα for α = L
or R or, equivalently, ǫ − µα and U . Only by driving U we can
modulate both of them independently.

This pumping response is remarkable since when U is not
driven but fixed (together with the couplings), pumping is not
possible for U = 0. Observation of the D resonances is thus a
particularly clear indication that one has gained independent
experimental control of the interaction, even when it is too
small to be detected in stationary dc spectroscopy.

We first consider the pumping curvature as a function of
driving parameters U and Vb in Fig. 9. The left panels are for
positive static gate voltage such that ǫ < µ (i.e., 〈N〉 = 2 at
the origin of the plane) and the right panels are for negative
static gate voltage such that ǫ > µ (i.e., 〈N〉 = 0 at the origin
of the plane).

When the static gate voltage is reduced to zero (i.e., ǫ = µ),
the D resonances seen in Fig. 9 move towards Vb = 0 where
their amplitude vanishes (not shown). We also observe that the
qualitative effect of driving Vb does not depend on the static
value of ǫ or the working-point value of Vb: inverting the sign
of either leaves the sign at a D resonance unaltered, in contrast
to the B resonances.

The D mechanism that is specific to driving U also shows

up when driving U and ǫ (see Fig. 10). We can map all the D

features occurring here to the previous ones:

FU,Vb
(ǫ) ≈ MD−

1
[U, ǫ − µL] ≈ − 1

2
FU,ǫ (Vb), (42a)

FU,Vb
(ǫ) ≈ MD+

2
[U, ǫ − µL] ≈ − 1

2
FU,ǫ (Vb), (42b)

FU,Vb
(ǫ) ≈ MD+

1
[U, ǫ − µR] ≈ 1

2
FU,ǫ (Vb), (42c)

FU,Vb
(ǫ) ≈ MD−

2
[U, ǫ − µR] ≈ 1

2
FU,ǫ (Vb), (42d)

using µL,R = µ ± Vb/2 (see Appendix D for details). In this

case, however, the qualitative effect of driving ǫ depends both

on the static value of Vb and the working-point value of ǫ:

inverting the sign of either reverses the sign at D resonances.

We now discuss how the remaining features in Figs. 9 and

10 map to pumping features due to static, negative, or positive

interaction U . Let us start with mechanisms A. There is no

feature due to mechanism A1 since U does not enter any

of its effective parameters. Mechanism A2 can be accessed

by driving U and Vb and it occurs around the point U =
−(ǫ − µ) > 0 and Vb = 0. It relates to driving with a static

U via

FU,Vb
(ǫ) ≈ MA2

[ǫ + U − µ,Vb] ≈ Fǫ,Vb
(U ). (43)

In contrast to mechanism A which always involves only

one transition energy, at the B points the large bias voltage

|Vb| ≈ U generates nonequilibrium populations of all states,

thereby “coupling” the pumping responses of the ǫ and ǫ + U

transitions. This is of interest since it allows for pumping

with ǫ and U as independent driving parameters (in contrast

to a number of previous cases where we found that U

may effectively act as a gate voltage). We therefore now

have a relation to the static U case both when driving U

and Vb,

FU,Vb
(ǫ) ≈ MB+ [ǫ + U − µL, ǫ − µR] ≈ 1

2
Fǫ,Vb

(U ),

FU,Vb
(ǫ) ≈ MB− [ǫ + U − µR, ǫ − µL] ≈ 1

2
Fǫ,Vb

(U ), (44)

as well as when driving U and ǫ,

FU,ǫ (Vb) ≈ MB+[ǫ + U − µL, ǫ − µR] ≈ Fǫ,Vb
(U ),

FU,ǫ (Vb) ≈ MB−[ǫ + U − µR, ǫ − µL] ≈ −Fǫ,Vb
(U ). (45)

Here, the factor of 2 between the two curvatures in (44) stems

from a coupled transformation of parameters (see Appendix D

for details). The pumping response due to mechanism B at

attractive interaction is again completely absent, as explained

in Sec. IV B 2.

For driven interaction, mechanism C can again only be

accessed by driving the bias voltage as a second parameter.

It is operative around the working point U = −2(ǫ − µ) < 0

and Vb = 0 and obeys the relation

FU,Vb
(ǫ) ≈ MC

[

ǫ + 1
2
U − µ,Vb

]

≈ 1
2
Fǫ,Vb

(U ). (46)

The function Fǫ,Vb
(U ) was explicitly written in Eq. (38).

The relations (43), (44), and (46) express that around the

discussed resonances the two factors that make up the pumping

curvature (26) locally show the same structure as in the cases

discussed earlier on [see Figs. 9(b) and 9(c)]. In particular, the

vertical line with a kink in the plot of 〈N〉 and the corresponding

pattern in the right panels of Figs. 8(b) and 8(c) for the ratio

(26c), can be clearly identified, even though we are plotting as

a function of the interaction U and not the gate voltage.
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FIG. 9. Pumping response for interaction and bias driving for static ǫ < µ (left) and ǫ > µ (right). We note that even for small gate voltages

|ǫ − µ| ≪ T (not shown) the resonances A, B, C shown in the two upper panels merge to a nonvanishing pumping response in the vicinity

of U = 0 and Vb = 0. (a) Curvature FU,Vb
vs. interaction and bias driving parameters, (b) Occupation number 〈N〉 given by Eq. (26b), and

(c) Ratio of charge-relaxation rates wR/(wR + wL) given by Eq. (26c).

4. Summary

Driving two parameters with fixed coupling shows a rich

set of pumping mechanisms as compared to protocols in

which one coupling is driven. Some resonances appear at

equilibrium working points (A), where the pumping may

dominate the transferred charge, whereas others arise at strong

nonequilibrium (B), where one is “pumping with/against

the flow” of the instantaneous current [Eq. (20)]. We have
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FIG. 10. Pumping response for interaction and gate driving for static Vb > 0 (left) and Vb < 0 (right). As the static bias is reduced to

|Vb| ≪ T (not shown), all resonances seen in Fig. 10(a) merge at the working point U = 0 and ǫ = µ. Notably, to have nonzero curvature at

that point the coupling needs to be asymmetric, otherwise pumping is prohibited by spatial symmetry. (a) Curvature FU,Vg vs. interaction and

gate-voltage driving parameters, (b) Occupation number 〈N〉 given by Eq. (26b), and (c) Ratio of charge-relaxation rates wR/(wR + wL) given

by Eq. (26c).
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shown that the pumping mechanism C is specific to the

physics of the “attractive Coulomb blockade.” Moreover,

the pumping mechanism D is unique to driven interaction.

Remarkably, its response arises at working points where the

static small |U | ≪ T forbids pumping with other parameters

(ǫ, Vb).

C. Pumped charge from integrated curvature

In the previous two sections, we discussed the curvature and

its qualitative differences between different driving protocols.

We now turn to the pumped charge that can be obtained from

it by integrating the curvature over the area of the driving

cycle in the plane of driving parameters. We stress again that

whenever the same mechanism is at work, for corresponding

driving cycles of its effective parameters, the pumped charge

will always be identical regardless of the actual experimental

protocol used to realize it.

Coupling driving. Figure 5 shows that the curvature has

either a constant sign or an alternating sign depending on

the second driving parameter. For gate voltage Vg as well as

the interaction U being the second parameter, increasing the

driving amplitude of both driven parameters will result in a

monotonically increasing pumped charge�NR. When increas-

ing only the amplitude of Vg or U (for fixed Ŵ
R amplitude) the

pumped charge eventually saturates when all resonance lines

are covered by the driving cycle.19 The amplitude for which

this happens depends on the other parameters. In contrast, as a

consequence of the sign changes of the curvature in Fig. 5(b),

the dependence of the pumped charge �NR on the Vb-driving

amplitude is not monotonic: instead of saturating it may even

approach zero depending on the driving cycle.

Gate and bias driving. For repulsive interaction [left panel

of Fig. 8(a)], around each resonance point, the curvature has

a definite sign (“monopolar” character). Thus, the pumped

charge initially increases monotonically and already when the

driving amplitude of both voltages is large on the thermal scale

T the pumped charge saturates at an intermediate plateau.

However, since these points come in pairs with opposite sign

and thus eventually the pumped charge decreases again for

amplitudes exceeding the interaction energy U and finally goes

to zero:
∫

dS Fǫ,Vb
= 0. (47)

This has been connected to the electron-hole symmetry of the

single-dot model.20 Quantitative relations between the pumped

charges of the A and B mechanisms were already discussed in

detail in [19].

For attractive interaction [right panel of Fig. 8(a)], the

feature resulting from the C mechanism has a very different,

“dipolar” character. This implies that the pumped charge

depends nonmonotonically on the driving amplitude and goes

to zero already when the amplitude exceeds the thermal energy

T . For symmetric coupling the contribution from just one of

19To maintain the slow driving condition for large amplitude, the

frequency needs to be reduced accordingly (see [22]).
20See relation of (A8a) and (A13a) in [19].

the lobes of the C resonance can be obtained exactly using our

explicit result (38):
∫

dS Fǫ,Vb
= ±

1

2
. (48)

Experimentally, this implies a characteristic feature of a net

pumping of 1
2

an electron per cycle for a sufficiently large

driving curve that passes through the node of the resonance,

tangent to the nodal line.

Interaction driving. Finally, the mechanism D unique to

driving the interaction has two curvature resonances of the

same sign in Fig. 9(a). In combination with the other reso-

nances, this leads to nonmonotonic behavior of the pumped

charge depending on the chosen working point. In contrast, in

Fig. 10(a) the D resonances have opposite signs and are the

sole cause of nonmonotic behavior.

V. PUMPING RESPONSE: DOUBLE DOT

In this final section, we discuss the pumping response

for the double-dot model (8), which only differs from the

single dot by level-degeneracy factors [Eq. (18) replaces (16)].

Since the orbital index in the double dot plays the role of the

spin in the single dot (both labeled by σ ), the degeneracy

difference is entirely due to the real spin of the double dot

(τ ). In contrast to stationary transport, where the additional

spin degeneracy would only lead to quantitative changes,

for the pumping response this leads to qualitative changes

relative to the single-dot model and in particular to a much

more complicated curvature formula [Eq. (29)]. For pumping,

replacing N =
∑

σ d†
σdσ →

∑

στ d†
στdστ in Eq. (1) is thus not

an innocent operation.

As before, we start by comparing the results for driving the

coupling Ŵ
R/ŴL together with one second driving parameter

(Sec. IV A). For repulsive interaction U > 0, the results (not

shown) are qualitatively unaltered relative to the left panels of

Fig. 7. Also for attractive interaction U < 0 similarities persist:

a comparison of the panels in Fig. 11 with the right panels

in Fig. 7 shows that the same mechanism still dominates the

pumping response at low bias. However, the curvature is also

nonzero along lines, at which the occupation of the double

dot changes. The sign of the pumping response at these lines

depends on the polarity of the gate voltage (ǫ − µ relative

to −|U/2|) in Figs. 11(a) and 11(c) or the bias polarity in

Fig. 11(c).

Thus, when driving the coupling Ŵ
R/ŴL of the double dot,

we find that even for attractive interaction U < 0, there is

a nonvanishing pumping response, whenever the occupation

changes. Exceptions to this are the missing lines at ǫ − µα

in Fig. 11, which are not accessible by driving U as before

in Figs. 5 and 7. All together, this means that some of the

intuition that holds for U > 0 is restored. The breakdown of

this intuition for the attractive single-dot model is thus a result

of its electron-hole symmetry. which causes in particular the

resonance lines at large bias Vb > |U | to vanish.

Next, we analyze the impact of the additional spin de-

generacy of the double dot when driving two parameters at

fixed couplings (Sec. IV B). Comparing results for repulsive

interaction U > 0 in the left panels of Figs. 12(a) and 8(a) (gate

and bias driving), one immediately notes the complete absence
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FIG. 11. Pumping curvatures for the double-dot system computed

from Eq. (29) for driving protocols involving one of the couplings, ŴR.

These correspond to right panels in Fig. 7 computed for the single-dot

model using Eq. (25). (a) Coupling-gate driving response FVg,ŴR ,

(b) Coupling-bias driving response FVb,ŴR , and (c) Coupling-

interaction driving response FU,ŴR .

of a pumping response due to the A2 mechanism. This quali-

tative difference is due to the equal degeneracy of the N = 1

and 2 charge states (both fourfold degenerate): it was noted in

[18] that the zero-bias resonances in the pumping curvature are

sensitive to the change in the degeneracy of the adjacent ground

states. This makes pumping an interesting spectroscopy tool for

quantum-dot systems [19,22] independent of the dc stationary

transport.

Another difference is that although the pumping responses

due to the B± mechanisms at large bias Vb ≈ ±U are still visi-

ble, their curvature values no longer have the same magnitude.

Depending on the coupling asymmetry Ŵ
R/ŴL, they may even

have the same sign as seen in Fig. 12. For symmetric coupling

Ŵ
L = Ŵ

R both features at the B± resonances survive with the

same sign (not shown), in contrast to the single-dot case, where

they both vanish due to electron-hole symmetry.

Comparing the results for attractive interaction U < 0 in the

right panels of Figs. 12(a) and 8(a), we note that the response

due to the C mechanism still dominates in the low-bias regime,

as in the single-dot model. However, the amplitudes of the two

lobes now differ (note also the nonsymmetric color scale), even

for symmetric coupling Ŵ
L = Ŵ

R (not shown). Qualitatively

different is the nonvanishing pumping response due to the B

mechanism. This response was suppressed in the single-dot

case [see Fig. 8(a) and Eqs. (40) and (41)].

Similar observations apply when comparing Figs. 12(b) and

9(a) (interaction-bias driving): The A2 mechanism is again

missing due to equal degeneracy of the N = 1, 2 state while for

the same reason the B resonances appear,21 even for attractive

interaction (right panels). Also, as before, the magnitudes of the

response due to the B mechanisms differ and the C resonance

continues to dominate the low-bias regime of attractive interac-

tion, but with asymmetric lobes. Importantly, the D resonances,

unique to interaction driving, do not change qualitatively,

although one should note the nonsymmetric color scale.

Finally, comparing Figs. 12(c) and 10(a) (interaction-gate

driving), the B resonances appear also at working points

with attractive interaction U < 0, in contrast to the single-dot

model.

Summary. The real spin in the double dot indeed leads

to three measurable qualitative deviations from the simpler

Anderson model, all due to the now equal degeneracies for

N = 1 and 2: the A2 mechanism becomes inoperative for

U > 0, the B mechanisms become operative even in the

attractive interaction regime, and for repulsive interaction the

B mechanism does no longer require nonsymmetric coupling.

VI. SUMMARY

Motivated by recent experiments [1,3,5,7] we have ana-

lyzed the pumping response of quantum-dot systems with

fully tunable parameters, in particular, in which the electron

interaction can be statically tuned or even dynamically driven.

We have mapped out which possible mechanisms govern

the pumping response for different experimentally realizable

driving protocols. The geometric formulation of the pumped

charge in terms of curvatures was a crucial tool for the

understanding of the pumping mechanisms.

21Going from Fig. 12(a) to Fig. 12(b) the B resonance changes sign,

in accordance with the relation (44) for the B mechanism.
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FIG. 12. Pumping curvatures for the double-dot system computed from Eq. (29) for driving protocols with fixed couplings Ŵ
L and Ŵ

R.

These correspond to the top panels of Figs. 8, 9, and 10 for a single-dot model which were computed using Eq. (25). (a) Gate-bias driving

response FVg,Vb
, (b) Interaction-bias driving response FU,Vb

, and (c) Interaction-gate driving response FU,Vg .
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We here highlight two key results arising from our detailed

analysis. (i) Static attractive interaction, nowadays accessible

[1,3,5,7], results in a characteristic pumping response (C

mechanism) whose properties and explanation are completely

different from the repulsive case. (ii) While we can show that

driven interaction is sometimes equivalent to driving of other

parameters (gate or bias voltage), we also found a unique

pumping response (D mechanism) that cannot be realized with-

out interaction driving. In all cases studied, we quantitatively

demonstrated relations between the pumping responses of

different driving protocols that are governed by the same pump-

ing mechanism. These analytical relations between different

geometric curvature components make precise the nontrivial

difference between experimental driving parameters and the

physical, effective parameters that drive the electron pump.

Experimentally, the resulting pumping responses are ob-

servable both in a single quantum dot with real spin [1,3,7]

as well as in a double dot with orbital pseudospin [5]. We,

however, also identified pumping responses that are charac-

teristic of the additional real-spin degree of freedom of the

double-dot model (yielding a broken electron-hole symmetry).

These differences would remain undetected when comparing

the stationary transport spectroscopy of the two systems.

Finally, it is noteworthy that pumping by the C mechanism

(leading to a response at a two-particle resonance) is not

suppressed in the weak coupling limit. This is because it

relies on tunnel rate asymmetries and not on their magnitude.

Indeed, the pumping effects predicted here rely on leading-

order tunneling process which were found to play a role at the

two-particle resonance of an attractive quantum dot in a recent

experiment [3]. Although corrections to pumping from next-to-

leading-order processes are of interest, the mechanisms that we

have described seem quite generic and are expected to remain

relevant for stronger tunneling. Moreover, the effects do not

rely on exact electron-hole symmetry, as our analysis of the

double-dot case showed.
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APPENDIX A: ELIMINATION OF SPIN FROM

A SINGLE QUANTUM DOT

Here, we derive the master equations for the effective model

(8). The key point is to clarify the degeneracy factors that

appear in the rate matrix (16) due to the presence of the spin

σ = ±. This procedure will be extended in Appendix B to deal

with the double-dot model.

1. Master equation without spin

The single quantum-dot model has four possible states: 0-

electron state |0〉, two 1-electron states |σ 〉 with σ = +,−, and

a 2-electron state |2〉 = |↑↓〉. We consider a single reservoir

and drop the superscript α, the general result follows by restor-

ing this index and summing the rates over α, i.e., we consider

W α in the decomposition of the kernel W =
∑

α=L,R W α . We

start from the master equation for the occupation probabilities

d

dt
ρ0 = W0,0ρ0 +

∑

σ

W0,σρσ , (A1a)

d

dt
ρσ = Wσ,0ρ0 + Wσ,σ ρσ + Wσ,2 ρ2, (A1b)

d

dt
ρ2 =

∑

σ

W2,σ ρσ + W2,2 ρ2, (A1c)

which is derived in the standard way assuming weak coupling

and high temperature (see, e.g., [30]). The diagonal entries

are fixed to Wi,i = −
∑

f �=i Wi,f by trace preservation where

i, j = 0, σ , or 2. In the main text we consider tunneling

independent of the spin σ :

Wσ,0 = W1,0, W2,σ = W2,1, (A2a)

W0,σ = W0,1, Wσ,2 = W1,2, (A2b)

where the right-hand sides are given in Eq. (17b). Introducing

the probability of single occupation

ρ1 :=
∑

σ

ρσ , (A3)

we integrate out the spin σ by taking Eq. (A1a), the linear

combination
∑

σ by Eqs. (A1b) and (A1c):

d

dt





ρ0

ρ1

ρ2



 =







−2W α
10 W α

01 0

2W α
10 −W α

01 − W α
21 2W α

12

0 W α
21 −2W α

12











ρ0

ρ1

ρ2



,

(A4)

where the diagonal entries are again dictated by trace preser-

vation Wi,i = −
∑

f �=i Wi,f where now i = 0, 1, 2. Restoring

the α index, this completes our derivation of the rate matrix

(16). These degeneracy factors express that the N = 0 ↔ 1

transitions occur with ratio 2 : 1 due to the spin degeneracy for

N = 1, as do the N = 2 ↔ 1. The doubling of rates 2W1,0

(2W1,2) occurs in the outer columns of the matrix because

the spin provides two processes for the decay of state 0 (2)

electrons.

The fact that the spin can be eliminated by introducing the

N = 1 occupation (A3) implies that (the relevant part of) the

density operator22

ρ =
∑

N=0,1,2

ρN |N ) (A5)

is confined to a linear subspace spanned by proper quantum

states with N = 0, 1, or 2 electrons: whereas the 0- and

22Please note that here |N ) is not equal to the adjoint of the trace

with the charge operator (N |, but exceptionally denotes the charge

states N = 0, 1, 2 defined in Eq. (A6).
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2-electron states are pure,

|0) := |0〉〈0|, |2) := |2〉〈2|, (A6a)

the 1-electron state is maximally mixed

|1) :=
1

2

∑

σ=±
|σ 〉〈σ |. (A6b)

This statistical mixing simply expresses that due to the assumed

spin symmetries, the transport measurements are unable to

detect the spin σ . Each of these basis states is trace normalized,

(1|N ) = 1, such that normalization is expressed as Trρ̂ =
(1|ρ ) =

∑

N=0,1,2 ρN = 1.

2. Current formula without spin

The current flowing out of reservoir α into the dot is given

by

INα = −
d

dt
〈Nα〉(t ) = TrNW αρ(t ), (A7)

where, in the second step, we used that [N + Nα,H Tα] = 0

for the coupling Hamiltonian decomposed as H T =
∑

α H Tα

(see Appendix A of [22]). The signs are chosen to agree with

those of the master equation d
dt

ρ(t ) = (
∑

σα W ασ )ρ(t ). An

expression TrN• as it appears in Eq. (A7) can be written in the

same way

TrNρ = (N |ρ) =
∑

N=0,1,2

NρN (A8)

due to the trace normalization of the basis states (1|N ) = 1.

This gives

INα = (N |W α|ρ) (A9)

=
[

0 1 2
]







−2W α
10 W α

01 0

2W α
10 −W α

01 − W α
21 2W α

12

0 W α
21 −2W α

12











ρ0

ρ1

ρ2





= 2W α
10ρ0 +

(

−W α
01 + W α

21

)

ρ1 − 2W α
12ρ2. (A10)

Here, the current contributions are enhanced by factors 2,

respectively, due to σ degeneracy of the final state.

APPENDIX B: ELIMINATION OF THE REAL

SPIN OF THE DOUBLE DOT

Closely following Appendix A, we obtain the master

equations and the current formula [Eqs. (14) and (15) with

rate matrix (18)] for the double quantum dot, highlighting the

additional assumptions relative to Appendix A and the role of

real-spin (τ ) degeneracy factors. These constitute the essential

difference to the single dot (not the pseudospin σ !).

1. Master equation without real spin and pseudospin

The double-dot model (8) has nine possible states: one

0-electron state |0〉, four 1-electron states |στ 〉 with one real

spin τ in dot σ , and four 2-electron states |ττ ′〉 with spin

τ in dot σ = + and τ ′ in dot σ = −. We excluded double

occupation of the each dot by the very large (infinite) intradot

interaction. If the intradot interaction is not much larger than

the interdot interaction, the experimental setup would just as

well be able to invert the sign of the intradot interaction in a

single quantum dot, simplifying matters significantly. We also

assumed negligible tunneling between the dots and therefore

work with product states |ττ ′〉 = |τ 〉 ⊗ |τ ′〉.
As before, first consider a single reservoir, not writing

a superscript α, and start from the master equation for the

occupations of the nine states:

d

dt
ρ0 = W0,0ρ0 +

∑

στ

W0,σ τρστ , (B1a)

d

dt
ρστ = Wστ,0ρ0 + Wστ,στρστ + δσ+

∑

τ ′

W+τ,ττ ′ ρττ ′

+ δσ−
∑

τ ′

W−τ,τ ′τ ρτ ′τ , (B1b)

d

dt
ρτ,τ ′ =Wττ ′,+τ ρ+τ +Wττ ′,−τ ′ ρ−τ ′ +Wττ ′,ττ ′ ρττ ′ (B1c)

with Wi,i = −
∑

f �=i Wi,f for i = 0, σ τ , or ττ ′. The assump-

tions made in the main text that the tunneling (i) of each dot σ

to the left/right side (α) is the same and (ii) independent of the

real spin τ imply [Eq. (17)]

Wστ,0 = W1,0, Wττ ′,+τ = Wττ ′,−τ ′ = W2,1, (B2a)

W0,σ τ = W0,1, W+τ,ττ ′ = W−τ ′,ττ ′ = W1,2. (B2b)

This allows us to integrate out the real spin τ and the pseudospin

σ by introducing partial sums of probabilities

ρ1 :=
∑

σ

∑

τ

ρστ , ρ2 :=
∑

ττ ′

ρττ ′, (B3)

and taking the linear combinations Eq. (B1a),
∑

στ Eq. (B1b),

and
∑

ττ ′ Eq. (B1c):

d

dt





ρ0

ρ1

ρ2



 =







−4W α
10 W α

01 0

4W α
10 −W α

01 − 2W α
21 2W α

12

0 2W α
21 −2W α

12













ρ0

ρ1

ρ2







(B4)

with Wi,i = −
∑

f �=i Wi,f for i = 0, 1, 2. Restoring the α

index, this completes our derivation of the rate matrix W α

given in Eq. (18).

The degeneracy factors express that the N = 0 ↔ 1 transi-

tions occur with ratio 4 : 1 due to real spin and pseudospin for

N = 1 whereas the N = 2 ↔ 1 transitions occur with equal

ratio 2 : 2 due to having two real spins for N = 2 and one real

spin and one pseudospin for N = 1.

Also in this case, the introduction of partial sums of

probabilities (B3) implies that the density operator can be

expanded trace-normalized basis states as in Eq. (A5) Although

the 0-electron state is still pure, now both the 1- and 2-electron

states are maximally mixed:

|1) =
1

4

∑

σ=±

∑

τ=↑,↓

|στ 〉〈στ |, (B5a)

|2) :=
1

4

∑

τ,τ ′=↑,↓

|ττ ′〉〈ττ ′|. (B5b)
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The statistical mixing now expresses that due to the assumed

spin and spatial symmetries the transport measurements are

able to detect neither the real spin τ nor the pseudospin σ .

Note that the four 2-electron states are degenerate (the dots

are not tunnel coupled but only capacitively coupled) which

rules out any spin-exchange effects. Indeed, Eq. (B5b) can

also be written as a statistical mixture of singlet and triplet

states.

2. Current formula without real spin and pseudospin

The sum of currents flowing out of reservoir α into both

dots σ = ± is

INα = −
d

dt
〈Nα〉(t ) (B6a)

=
∑

σ

TrNσW ασρ(t ) = TrNW αρ(t ), (B6b)

where now we used that [
∑

σ Nσ + Nα,H T,α] = 0 when

decomposing the coupling as H T =
∑

α H Tα . We also de-

composed W =
∑

ασ W ασ into contributions involving dot σ

and reservoir α. In the second step, we assumed the coupling

strength on the α side to be the same for each dot, such that

W ασ = W α . Also in this case Eq. (A10) holds due to the trace

normalization of the basis states (N |n) = 1, with the same

modified rate matrix:

INα = TrNW αρ = (N |W α|ρ) (B7)

=
[

0 1 2
]









−4W α
10 W α

01 0

4W α
10 −W α

01 − 2W α
21 2W α

12

0 2W α
21 −2W α

12













ρ0

ρ1

ρ2





= 4W α
10ρ0 +

(

−W α
01 + 2W α

21

)

ρ1 − 2W α
12ρ2. (B8)

Now, the current contributions are enhanced by factors 4, 2,

and 2, respectively, due to στ , τ , and σ degeneracy of the final

state.

APPENDIX C: CURVATURE FORMULA

In this Appendix we derive the key result (29) of the

main text. The adiabatic-response equations W |ρ i) = 0 and

W |ρr) = d/dt |ρ i) for both cases [Eq. (14) with rates (18) or

(16)] can be written in the same form





0

0

0



 =





−W̄10 W̄01 0

W̄10 −W̄01 − W̄21 W̄12

0 W̄21 −W̄12









ρ0

ρ1

ρ2



, (C1)

d

dt





ρ0

ρ1

ρ2



 =





−W̄10 W̄01 0

W̄10 −W̄01 − W̄21 W̄12

0 W̄21 −W̄12











ρr
0

ρr
1

ρr
2






(C2)

by absorbing the degeneracy factors into the rates with an

overbar. The corresponding formulas for the response part of

the current [Eq. (15) with rates (18) or (16)] read as

I r
Nα = (N |W α|ρr) (C3)

=
[

0 1 2
]







−W̄ α
10 W̄ α

01 0

W̄ α
10 −W̄ α

01 − W̄ α
21 W̄ α

12

0 W̄ α
21 −W̄ α

12













ρr
0

ρr
1

ρr
2







= W̄ α
10ρ

r
0 +

(

−W̄ α
01 + W̄ α

21

)

ρr
1 − W̄ α

12ρ
r
2. (C4)

Using trace normalization, these equations can be reduced

to formulas involving only 2×2 matrices and vectors. From

Eq. (C1) we eliminate ρ1 = 1 − ρ0 − ρ2,
[

−W̄01

−W̄21

]

=
[

−W̄10 − W̄01 −W̄01

−W̄21 −W̄21 − W̄12

][

ρ0

ρ2

]

, (C5)

and from Eq. (C2) we eliminate ρr
1 = −ρr

0 − ρr
2,

d

dt

[

ρ0

ρ2

]

=
[

−W̄10 − W̄01 −W̄01

−W̄21 −W̄21 − W̄12

][

ρr
0

ρr
2

]

. (C6)

Similarly, the response-current formula reduces to

I r
Nα =

[

−1 1
]

[−W̄ α
10 − W̄ α

01 −W̄ α
01

−W̄ α
21 −W̄ α

21 − W̄ α
12

][

ρr
0

ρr
2

]

=
(

W̄ α
10 + W̄ α

01

)

ρr
0 −

(

W̄ α
21 + W̄ α

12

)

ρr
2. (C7)

Solving these three equations [this amounts to the calcula-

tion of the pseudoinverse W−1 in Eq. (21)] one obtains after

some algebra an expression which can be written as I r
Nα =

AαdR/dt where Aα is the pumping connection. The result (29)

given in the main text then follows from F α = ∇ × Aα . The

gradients in this expression can be evaluated more explicitly

to give

F α = ∇







1

[W̄10W̄12 + W̄10W̄21 + W̄01W̄12]3





−
(

W̄ α
10 + W̄ α

01 − W̄ α
21

)

W̄12 −
(

W̄ α
10 + W̄ α

12

)

W̄21

−
(

W̄ α
01 − W̄ α

21 − W̄ α
12

)

W̄10 +
(

W̄ α
10 + W̄ α

12

)

W̄01











(C8a)

·

[

(∇W̄12W̄01)W̄10[W̄12 + W̄21] − W̄12W̄01∇W̄10[W̄12 + W̄21]

(∇W̄10W̄21)[W̄10 + W̄01]W̄12 − W̄10W̄21∇[W̄10 + W̄01]W̄12

]

, (C8b)
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where the center dot indicates the scalar product of the column vectors and the cross product of the derivative operators ∇, similar

to Eq. (22). Antisymmetrization gives the most explicit result for F := (F R − F L)/2 = F R:

F = ∇

{

1

[W̄10W̄12 + W̄10W̄21 + W̄01W̄12]3

[

− 1
2

(

W̄R
01 − W̄L

01

)

W̄12 − 1
2

(

W̄R
10 − W̄L

10

)

(W̄12 + W̄21) +
(

W̄R
21W̄

L
12 − W̄L

21W̄
R
12

)

1
2

(

W̄R
21 − W̄L

21

)

W̄10 + 1
2

(

W̄R
12 − W̄L

12

)

(W̄10 + W̄01) −
(

W̄R
01W̄

L
10 − W̄L

01W̄
R
10

)

]}

·

[

(∇W̄12W̄01)W̄10[W̄12 + W̄21] − W̄12W̄01∇(W̄10[W̄12 + W̄21])

(∇W̄10W̄21)[W̄10 + W̄01]W̄12 − W̄10W̄21∇([W̄10 + W̄01]W̄12)

]

. (C9)

APPENDIX D: EFFECTIVE DRIVING PARAMETERS

Here, as an example, we derive the first relation of (44):

FU,Vb
(ǫ) ≈ MB+ (ǫ + U − µL, ǫ − µR) ≈ 1

2
Fǫ,Vb

(U ), (D1)

in order to indicate where the variety of prefactors in the

relations between different curvature components come from.

From the fact that the B+ mechanism dominates the response,

one expects that the curvature is a function of the distance of the

upper (lower) addition energy to the left (right) electrochemical

potential. This can be written in two ways: either as a function

of (U,Vb) with fixed ǫ

MB+ (ǫ + U − µL, ǫ − µR) (D2)

= MB+
[

ǫ + U/2 − µ, ǫ −
(

µ− 1
2
Vb

)]

= 4FU,Vb
(ǫ) (D3)

with the inverse of the Jacobian |∂ (ǫ + U/2 − µ, ǫ − µ +
Vb/2)/∂ (U,V )| = 1

4
, or as function of (ǫ, Vb) with fixed U

MB+
[

ǫ + U/2 − µ, ǫ −
(

µ − 1
2
Vb

)]

= 2Fǫ,Vb
(U ), (D4)

now using the inverse of |∂ (ǫ + U/2−µ, ǫ−µ + Vb/2)/

∂ (ǫ, V )| = 1
2
. Thus, if the curvature components stem

from a common mechanism, they must be related as in

Eq. (D1).

Note that these and similar relations in the main text only

hold true when the considered mechanism is well separated

from others. In each case, they were verified on the analyt-

ical computed curvature components in the proper physical

limits.
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