000860280 001__ 860280
000860280 005__ 20210130000501.0
000860280 0247_ $$2doi$$a10.1021/acs.chemmater.8b01900
000860280 0247_ $$2ISSN$$a0897-4756
000860280 0247_ $$2ISSN$$a1520-5002
000860280 0247_ $$2WOS$$aWOS:000440105500035
000860280 037__ $$aFZJ-2019-01055
000860280 082__ $$a540
000860280 1001_ $$0P:(DE-HGF)0$$aWang, Jiang-Jing$$b0
000860280 245__ $$aGenesis and Effects of Swapping Bilayers in Hexagonal GeSb 2 Te 4
000860280 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2018
000860280 3367_ $$2DRIVER$$aarticle
000860280 3367_ $$2DataCite$$aOutput Types/Journal article
000860280 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1548943929_21932
000860280 3367_ $$2BibTeX$$aARTICLE
000860280 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860280 3367_ $$00$$2EndNote$$aJournal Article
000860280 520__ $$aDisorder plays an essential role in shaping the transport properties of GeSbTe phase-change materials (PCMs) to enable nonvolatile memory technology. Recently, increasing efforts have been undertaken to investigate disorder in the stable hexagonal phase of GeSbTe compounds, focusing on a special type of swapping bilayer defects. This configuration has been claimed to be the key element for a new mechanism for phase-change memory. Here, we report a direct atomic-scale chemical identification of these swapping bilayer defects in hexagonal GeSb2Te4 together with nanoscale atomic modeling and simulations. We identify the intermixing of Sb and Te in the bilayer to be the essential ingredient for the stability of the defects, and elucidate their abundance as due to the small energy cost. The bilayer defects are demonstrated to be ineffective in altering the electron localization nature that is relevant to transport properties of hexagonal GeSb2Te4. Our work paves the way for future studies of layer-switching dynamics in GeSbTe at the atomic and electronic level, which could be important to understand the new switching mechanism relevant to interfacial phase-change memory.
000860280 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000860280 588__ $$aDataset connected to CrossRef
000860280 7001_ $$0P:(DE-HGF)0$$aWang, Jun$$b1
000860280 7001_ $$0P:(DE-Juel1)145710$$aDu, Hongchu$$b2
000860280 7001_ $$0P:(DE-Juel1)161232$$aLu, Lu$$b3
000860280 7001_ $$0P:(DE-HGF)0$$aSchmitz, Peter C.$$b4
000860280 7001_ $$0P:(DE-HGF)0$$aReindl, Johannes$$b5
000860280 7001_ $$0P:(DE-HGF)0$$aMio, Antonio M.$$b6
000860280 7001_ $$0P:(DE-Juel1)130736$$aJia, Chun-Lin$$b7
000860280 7001_ $$0P:(DE-HGF)0$$aMa, Evan$$b8
000860280 7001_ $$0P:(DE-HGF)0$$aMazzarello, Riccardo$$b9
000860280 7001_ $$0P:(DE-Juel1)176716$$aWuttig, Matthias$$b10$$ufzj
000860280 7001_ $$0P:(DE-HGF)0$$aZhang, Wei$$b11$$eCorresponding author
000860280 773__ $$0PERI:(DE-600)1500399-1$$a10.1021/acs.chemmater.8b01900$$gVol. 30, no. 14, p. 4770 - 4777$$n14$$p4770 - 4777$$tChemistry of materials$$v30$$x1520-5002$$y2018
000860280 8564_ $$uhttps://juser.fz-juelich.de/record/860280/files/acs.chemmater.8b01900.pdf$$yRestricted
000860280 8564_ $$uhttps://juser.fz-juelich.de/record/860280/files/acs.chemmater.8b01900.pdf?subformat=pdfa$$xpdfa$$yRestricted
000860280 909CO $$ooai:juser.fz-juelich.de:860280$$pVDB
000860280 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145710$$aForschungszentrum Jülich$$b2$$kFZJ
000860280 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130736$$aForschungszentrum Jülich$$b7$$kFZJ
000860280 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176716$$aForschungszentrum Jülich$$b10$$kFZJ
000860280 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000860280 9141_ $$y2018
000860280 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000860280 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM MATER : 2017
000860280 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860280 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860280 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860280 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860280 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860280 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860280 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860280 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860280 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860280 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000860280 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEM MATER : 2017
000860280 920__ $$lyes
000860280 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000860280 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x1
000860280 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
000860280 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x3
000860280 980__ $$ajournal
000860280 980__ $$aVDB
000860280 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000860280 980__ $$aI:(DE-Juel1)PGI-10-20170113
000860280 980__ $$aI:(DE-82)080012_20140620
000860280 980__ $$aI:(DE-82)080009_20140620
000860280 980__ $$aUNRESTRICTED