001     860280
005     20210130000501.0
024 7 _ |a 10.1021/acs.chemmater.8b01900
|2 doi
024 7 _ |a 0897-4756
|2 ISSN
024 7 _ |a 1520-5002
|2 ISSN
024 7 _ |a WOS:000440105500035
|2 WOS
037 _ _ |a FZJ-2019-01055
082 _ _ |a 540
100 1 _ |a Wang, Jiang-Jing
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Genesis and Effects of Swapping Bilayers in Hexagonal GeSb 2 Te 4
260 _ _ |a Washington, DC
|c 2018
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1548943929_21932
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Disorder plays an essential role in shaping the transport properties of GeSbTe phase-change materials (PCMs) to enable nonvolatile memory technology. Recently, increasing efforts have been undertaken to investigate disorder in the stable hexagonal phase of GeSbTe compounds, focusing on a special type of swapping bilayer defects. This configuration has been claimed to be the key element for a new mechanism for phase-change memory. Here, we report a direct atomic-scale chemical identification of these swapping bilayer defects in hexagonal GeSb2Te4 together with nanoscale atomic modeling and simulations. We identify the intermixing of Sb and Te in the bilayer to be the essential ingredient for the stability of the defects, and elucidate their abundance as due to the small energy cost. The bilayer defects are demonstrated to be ineffective in altering the electron localization nature that is relevant to transport properties of hexagonal GeSb2Te4. Our work paves the way for future studies of layer-switching dynamics in GeSbTe at the atomic and electronic level, which could be important to understand the new switching mechanism relevant to interfacial phase-change memory.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Wang, Jun
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Du, Hongchu
|0 P:(DE-Juel1)145710
|b 2
700 1 _ |a Lu, Lu
|0 P:(DE-Juel1)161232
|b 3
700 1 _ |a Schmitz, Peter C.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Reindl, Johannes
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Mio, Antonio M.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Jia, Chun-Lin
|0 P:(DE-Juel1)130736
|b 7
700 1 _ |a Ma, Evan
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Mazzarello, Riccardo
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Wuttig, Matthias
|0 P:(DE-Juel1)176716
|b 10
|u fzj
700 1 _ |a Zhang, Wei
|0 P:(DE-HGF)0
|b 11
|e Corresponding author
773 _ _ |a 10.1021/acs.chemmater.8b01900
|g Vol. 30, no. 14, p. 4770 - 4777
|0 PERI:(DE-600)1500399-1
|n 14
|p 4770 - 4777
|t Chemistry of materials
|v 30
|y 2018
|x 1520-5002
856 4 _ |u https://juser.fz-juelich.de/record/860280/files/acs.chemmater.8b01900.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/860280/files/acs.chemmater.8b01900.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:860280
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145710
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130736
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)176716
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM MATER : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CHEM MATER : 2017
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 1
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 2
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a I:(DE-Juel1)PGI-10-20170113
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21