000860281 001__ 860281
000860281 005__ 20210130000501.0
000860281 0247_ $$2doi$$a10.1063/1.5051703
000860281 0247_ $$2ISSN$$a0021-9606
000860281 0247_ $$2ISSN$$a1089-7690
000860281 0247_ $$2ISSN$$a1520-9032
000860281 0247_ $$2Handle$$a2128/21513
000860281 0247_ $$2pmid$$apmid:30599744
000860281 0247_ $$2WOS$$aWOS:000454626000026
000860281 0247_ $$2altmetric$$aaltmetric:53355055
000860281 037__ $$aFZJ-2019-01056
000860281 082__ $$a530
000860281 1001_ $$0P:(DE-Juel1)168508$$aLiu, J.$$b0
000860281 245__ $$aUnderstanding doped perovskite ferroelectrics with defective dipole model
000860281 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2018
000860281 3367_ $$2DRIVER$$aarticle
000860281 3367_ $$2DataCite$$aOutput Types/Journal article
000860281 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1548944437_21932
000860281 3367_ $$2BibTeX$$aARTICLE
000860281 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860281 3367_ $$00$$2EndNote$$aJournal Article
000860281 520__ $$aWhile doping is widely used for tuning physical properties of perovskites in experiments, it remains a challenge to exactly know how doping achieves the desired effects. Here, we propose an empirical and computationally tractable model to understand the effects of doping with Fe-doped BaTiO3 as an example. This model assumes that the lattice sites occupied by a Fe ion and its nearest six neighbors lose their ability to polarize, giving rise to a small cluster of defective dipoles. Employing this model in Monte Carlo simulations, many important features such as reduced polarization and the convergence of phase transition temperatures, which have been observed experimentally in acceptor doped systems, are successfully obtained. Based on microscopic information of dipole configurations, we provide insights into the driving forces behind doping effects and propose that active dipoles, which exist in proximity to the defective dipoles, can account for experimentally observed phenomena. Close attention to these dipoles is necessary to understand and predict doping effects
000860281 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000860281 588__ $$aDataset connected to CrossRef
000860281 7001_ $$0P:(DE-Juel1)145711$$aJin, Lei$$b1
000860281 7001_ $$0P:(DE-Juel1)177746$$aJiang, Z.$$b2
000860281 7001_ $$00000-0002-6889-2506$$aLiu, L.$$b3
000860281 7001_ $$00000-0002-3130-8193$$aHimanen, L.$$b4
000860281 7001_ $$0P:(DE-Juel1)165707$$aWei, Jing$$b5
000860281 7001_ $$00000-0002-8515-429X$$aZhang, N.$$b6
000860281 7001_ $$0P:(DE-Juel1)162432$$aWang, D.$$b7
000860281 7001_ $$0P:(DE-Juel1)130736$$aJia, C.-L.$$b8
000860281 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/1.5051703$$gVol. 149, no. 24, p. 244122 -$$n24$$p244122 -$$tThe journal of chemical physics$$v149$$x1089-7690$$y2018
000860281 8564_ $$uhttps://juser.fz-juelich.de/record/860281/files/1.5051703.pdf$$yPublished on 2018-12-31. Available in OpenAccess from 2019-12-31.
000860281 8564_ $$uhttps://juser.fz-juelich.de/record/860281/files/1.5051703.pdf?subformat=pdfa$$xpdfa$$yPublished on 2018-12-31. Available in OpenAccess from 2019-12-31.
000860281 909CO $$ooai:juser.fz-juelich.de:860281$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000860281 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168508$$aForschungszentrum Jülich$$b0$$kFZJ
000860281 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145711$$aForschungszentrum Jülich$$b1$$kFZJ
000860281 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177746$$aForschungszentrum Jülich$$b2$$kFZJ
000860281 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130736$$aForschungszentrum Jülich$$b8$$kFZJ
000860281 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000860281 9141_ $$y2018
000860281 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860281 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860281 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000860281 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM PHYS : 2017
000860281 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860281 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860281 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860281 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000860281 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860281 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860281 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000860281 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000860281 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860281 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000860281 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000860281 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860281 920__ $$lyes
000860281 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000860281 980__ $$ajournal
000860281 980__ $$aVDB
000860281 980__ $$aUNRESTRICTED
000860281 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000860281 9801_ $$aFullTexts