| Home > Publications database > Understanding doped perovskite ferroelectrics with defective dipole model > print |
| 001 | 860281 | ||
| 005 | 20210130000501.0 | ||
| 024 | 7 | _ | |a 10.1063/1.5051703 |2 doi |
| 024 | 7 | _ | |a 0021-9606 |2 ISSN |
| 024 | 7 | _ | |a 1089-7690 |2 ISSN |
| 024 | 7 | _ | |a 1520-9032 |2 ISSN |
| 024 | 7 | _ | |a 2128/21513 |2 Handle |
| 024 | 7 | _ | |a pmid:30599744 |2 pmid |
| 024 | 7 | _ | |a WOS:000454626000026 |2 WOS |
| 024 | 7 | _ | |a altmetric:53355055 |2 altmetric |
| 037 | _ | _ | |a FZJ-2019-01056 |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Liu, J. |0 P:(DE-Juel1)168508 |b 0 |
| 245 | _ | _ | |a Understanding doped perovskite ferroelectrics with defective dipole model |
| 260 | _ | _ | |a Melville, NY |c 2018 |b American Institute of Physics |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1548944437_21932 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a While doping is widely used for tuning physical properties of perovskites in experiments, it remains a challenge to exactly know how doping achieves the desired effects. Here, we propose an empirical and computationally tractable model to understand the effects of doping with Fe-doped BaTiO3 as an example. This model assumes that the lattice sites occupied by a Fe ion and its nearest six neighbors lose their ability to polarize, giving rise to a small cluster of defective dipoles. Employing this model in Monte Carlo simulations, many important features such as reduced polarization and the convergence of phase transition temperatures, which have been observed experimentally in acceptor doped systems, are successfully obtained. Based on microscopic information of dipole configurations, we provide insights into the driving forces behind doping effects and propose that active dipoles, which exist in proximity to the defective dipoles, can account for experimentally observed phenomena. Close attention to these dipoles is necessary to understand and predict doping effects |
| 536 | _ | _ | |a 143 - Controlling Configuration-Based Phenomena (POF3-143) |0 G:(DE-HGF)POF3-143 |c POF3-143 |f POF III |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Jin, Lei |0 P:(DE-Juel1)145711 |b 1 |
| 700 | 1 | _ | |a Jiang, Z. |0 P:(DE-Juel1)177746 |b 2 |
| 700 | 1 | _ | |a Liu, L. |0 0000-0002-6889-2506 |b 3 |
| 700 | 1 | _ | |a Himanen, L. |0 0000-0002-3130-8193 |b 4 |
| 700 | 1 | _ | |a Wei, Jing |0 P:(DE-Juel1)165707 |b 5 |
| 700 | 1 | _ | |a Zhang, N. |0 0000-0002-8515-429X |b 6 |
| 700 | 1 | _ | |a Wang, D. |0 P:(DE-Juel1)162432 |b 7 |
| 700 | 1 | _ | |a Jia, C.-L. |0 P:(DE-Juel1)130736 |b 8 |
| 773 | _ | _ | |a 10.1063/1.5051703 |g Vol. 149, no. 24, p. 244122 - |0 PERI:(DE-600)1473050-9 |n 24 |p 244122 - |t The journal of chemical physics |v 149 |y 2018 |x 1089-7690 |
| 856 | 4 | _ | |y Published on 2018-12-31. Available in OpenAccess from 2019-12-31. |u https://juser.fz-juelich.de/record/860281/files/1.5051703.pdf |
| 856 | 4 | _ | |y Published on 2018-12-31. Available in OpenAccess from 2019-12-31. |x pdfa |u https://juser.fz-juelich.de/record/860281/files/1.5051703.pdf?subformat=pdfa |
| 909 | C | O | |o oai:juser.fz-juelich.de:860281 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)168508 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)145711 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)177746 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)130736 |
| 913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-143 |2 G:(DE-HGF)POF3-100 |v Controlling Configuration-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
| 914 | 1 | _ | |y 2018 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
| 915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J CHEM PHYS : 2017 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
| 915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|