000860283 001__ 860283
000860283 005__ 20210130000502.0
000860283 0247_ $$2doi$$a10.1016/j.jmst.2016.09.027
000860283 0247_ $$2ISSN$$a1005-0302
000860283 0247_ $$2ISSN$$a1941-1162
000860283 0247_ $$2WOS$$aWOS:000426447800020
000860283 037__ $$aFZJ-2019-01058
000860283 082__ $$a670
000860283 1001_ $$0P:(DE-HGF)0$$aLu, Jiangbo$$b0$$eCorresponding author
000860283 245__ $$aMicrostructure and secondary phases in epitaxial LaBaCo 2 O 5.5+δ thin films
000860283 260__ $$aShenyang$$bEd. Board, Journal of Materials Science & Technology$$c2018
000860283 3367_ $$2DRIVER$$aarticle
000860283 3367_ $$2DataCite$$aOutput Types/Journal article
000860283 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1548947390_27781
000860283 3367_ $$2BibTeX$$aARTICLE
000860283 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860283 3367_ $$00$$2EndNote$$aJournal Article
000860283 520__ $$aAberration-corrected scanning transmission electron microscopy was employed to investigate the microstructures and secondary phases in LaBaCo2O5.5 + δ (LBCO) thin films grown on SrTiO3 (STO) substrates. The as-grown films showed an epitaxial growth on the substrates with atomically sharp interfaces and orientation relationships of [100]LBCO//[100]STO and (001)LBCO//(001)STO. Secondary phases were observed in the films, which strongly depended on the sample fabrication conditions. In the film prepared at a temperature of 900 °C, nano-scale CoO pillars nucleated on the substrate, and grew along the [001] direction of the film. In the film grown at a temperature of 1000 °C, isolated nano-scale Co3O4 particles appeared, which promoted the growth of {111} twinning structures in the film. The orientation relationships and the interfaces between the secondary phases and the films were illustrated, and the growth mechanism of the film was discussed.
000860283 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000860283 588__ $$aDataset connected to CrossRef
000860283 7001_ $$0P:(DE-Juel1)161232$$aLu, Lu$$b1
000860283 7001_ $$0P:(DE-HGF)0$$aCheng, Sheng$$b2
000860283 7001_ $$0P:(DE-HGF)0$$aLiu, Ming$$b3
000860283 7001_ $$0P:(DE-HGF)0$$aJia, Chunlin@fz-juelich. de$$b4
000860283 773__ $$0PERI:(DE-600)2431914-4$$a10.1016/j.jmst.2016.09.027$$gVol. 34, no. 2, p. 398 - 402$$n2$$p398 - 402$$tJournal of materials science & technology$$v34$$x1005-0302$$y2018
000860283 909CO $$ooai:juser.fz-juelich.de:860283$$pVDB
000860283 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b4$$kFZJ
000860283 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000860283 9141_ $$y2018
000860283 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000860283 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000860283 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860283 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER SCI TECHNOL : 2017
000860283 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860283 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860283 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860283 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860283 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000860283 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000860283 920__ $$lyes
000860283 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000860283 980__ $$ajournal
000860283 980__ $$aVDB
000860283 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000860283 980__ $$aUNRESTRICTED