000860285 001__ 860285
000860285 005__ 20210130000502.0
000860285 0247_ $$2doi$$a10.1088/1674-1056/27/5/056803
000860285 0247_ $$2ISSN$$a1004-423X
000860285 0247_ $$2ISSN$$a1009-1963
000860285 0247_ $$2ISSN$$a1674-1056
000860285 0247_ $$2ISSN$$a1741-4199
000860285 0247_ $$2ISSN$$a2058-3834
000860285 0247_ $$2WOS$$aWOS:000432668900003
000860285 037__ $$aFZJ-2019-01060
000860285 082__ $$a530
000860285 1001_ $$0P:(DE-Juel1)130736$$aJia, Chun-Lin$$b0$$eCorresponding author
000860285 245__ $$aQuantitative HRTEM and its application in the study of oxide materials
000860285 260__ $$aLondon$$bInst. of Physics$$c2018
000860285 3367_ $$2DRIVER$$aarticle
000860285 3367_ $$2DataCite$$aOutput Types/Journal article
000860285 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1548943169_25674
000860285 3367_ $$2BibTeX$$aARTICLE
000860285 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860285 3367_ $$00$$2EndNote$$aJournal Article
000860285 520__ $$aOn the basis of a state-of-the-art aberration-corrected transmission electron microscope, the spherical aberration coefficient C S of the objective lens can be tuned to either a positive or a negative value. The use of a negative value of C S combined with an overfocus setting of the objective lens leads to the development of the negative C S imaging (NCSI) technique. Images obtained using the NCSI technique show superior contrast and signal intensity at atomic column positions than the corresponding positive C S images, especially for weakly scattering oxygen columns that are in close proximity to strongly scattering cation columns in oxides. Based on the images obtained under the NCSI condition, quantification of the image contrast allows measurements of the atom positions with a precision of a few picometers and the local chemistry on atomic scale. In the present review, we discuss firstly the benefits of the NCSI technique in studies of oxide materials, and then show a procedure for quantitative analysis of the image based on the absolute value of contrast. In the last part, examples are given for the application of the quantitative high-resolution transmission electron microscopy (HRTEM) to the study of electric dipoles of oxide ferroelectrics and atomic-scale chemistry of interfaces.
000860285 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000860285 588__ $$aDataset connected to CrossRef
000860285 7001_ $$0P:(DE-HGF)0$$aMi, Shao-Bo$$b1
000860285 7001_ $$0P:(DE-Juel1)145711$$aJin, Lei$$b2
000860285 773__ $$0PERI:(DE-600)2412147-2$$a10.1088/1674-1056/27/5/056803$$gVol. 27, no. 5, p. 056803 -$$n5$$p056803 -$$tChinese physics / B B$$v27$$x1674-1056$$y2018
000860285 8564_ $$uhttps://juser.fz-juelich.de/record/860285/files/Jia_2018_Chinese_Phys._B_27_056803-1.pdf$$yRestricted
000860285 8564_ $$uhttps://juser.fz-juelich.de/record/860285/files/Jia_2018_Chinese_Phys._B_27_056803-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000860285 909CO $$ooai:juser.fz-juelich.de:860285$$pVDB
000860285 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130736$$aForschungszentrum Jülich$$b0$$kFZJ
000860285 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145711$$aForschungszentrum Jülich$$b2$$kFZJ
000860285 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000860285 9141_ $$y2018
000860285 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000860285 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000860285 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHINESE PHYS B : 2017
000860285 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860285 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860285 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860285 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860285 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860285 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860285 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860285 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860285 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000860285 920__ $$lyes
000860285 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000860285 980__ $$ajournal
000860285 980__ $$aVDB
000860285 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000860285 980__ $$aUNRESTRICTED