000860286 001__ 860286
000860286 005__ 20210130000502.0
000860286 0247_ $$2doi$$a10.1016/j.ultramic.2018.05.009
000860286 0247_ $$2pmid$$apmid:29890501
000860286 0247_ $$2WOS$$aWOS:000437102000008
000860286 037__ $$aFZJ-2019-01061
000860286 082__ $$a570
000860286 1001_ $$0P:(DE-Juel1)130736$$aJia, Chun-Lin$$b0$$eCorresponding author
000860286 245__ $$aAtomic-scale evidence for displacive disorder in bismuth zinc niobate pyrochlore
000860286 260__ $$aAmsterdam$$bElsevier Science$$c2018
000860286 3367_ $$2DRIVER$$aarticle
000860286 3367_ $$2DataCite$$aOutput Types/Journal article
000860286 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1548946627_27781
000860286 3367_ $$2BibTeX$$aARTICLE
000860286 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860286 3367_ $$00$$2EndNote$$aJournal Article
000860286 520__ $$aPyrochlores characterized by the chemical formula A2B2O7 form an extended class of materials with interesting physical and chemical properties. The compound Bi1.5ZnNb1.5O7 is prototypical. Its excellent dielectric properties make it attractive, e.g. for capacitors, tunable microwave devices and electric-energy storage equipment. Bi1.5ZnNb1.5O7 shows an intriguing frequency-dispersive dielectric relaxation at 50 K ≤ T ≤ 250 K, which has been studied intensively but is still not fully understood. In this first study on a pyrochlore by atomic-resolution transmission electron microscopy we observe the Bi atoms on A sites since, due to their low nuclear charge, the contribution of Zn atoms to the contrast of these sites is negligible. We find in our and [112] oriented images that the position of the atomic intensity maxima do not coincide with the projected Wyckoff positions of the basic pyrochlore lattice. This supplies atomic-scale evidence for displacive disorder on split A-type sites. The Bi atoms are sessile, only occasionally we observe in time sequences of images jumps between individual split-site positions. The apertaining jump rate of the order of 0.1–1 Hz is by ten orders of magnitude lower than the values derived in the literature from Arrhenius plots of the low-temperature dielectric relaxation data. It is argued that these jumps are radiation induced. Therefore our observations are ruling out a contribution of Bi-atom jumps to low-temperature dielectric A sites-related relaxation. It is suggested that this relaxation is mediated by jumps of Zn atoms.
000860286 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000860286 7001_ $$0P:(DE-Juel1)145711$$aJin, Lei$$b1
000860286 7001_ $$0P:(DE-HGF)0$$aChen, Yue-Hua$$b2
000860286 7001_ $$0P:(DE-Juel1)131013$$aUrban, Knut$$b3
000860286 7001_ $$0P:(DE-HGF)0$$aWang, Hong$$b4
000860286 773__ $$0PERI:(DE-600)1479043-9$$a10.1016/j.ultramic.2018.05.009$$p57 - 68$$tUltramicroscopy$$v192$$x0304-3991$$y2018
000860286 8564_ $$uhttps://juser.fz-juelich.de/record/860286/files/1-s2.0-S0304399118300147-main.pdf$$yRestricted
000860286 8564_ $$uhttps://juser.fz-juelich.de/record/860286/files/1-s2.0-S0304399118300147-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000860286 909CO $$ooai:juser.fz-juelich.de:860286$$pVDB
000860286 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130736$$aForschungszentrum Jülich$$b0$$kFZJ
000860286 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145711$$aForschungszentrum Jülich$$b1$$kFZJ
000860286 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131013$$aForschungszentrum Jülich$$b3$$kFZJ
000860286 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000860286 9141_ $$y2018
000860286 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000860286 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bULTRAMICROSCOPY : 2017
000860286 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860286 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860286 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000860286 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860286 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860286 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860286 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860286 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860286 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860286 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000860286 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860286 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000860286 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000860286 920__ $$lyes
000860286 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000860286 980__ $$ajournal
000860286 980__ $$aVDB
000860286 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000860286 980__ $$aUNRESTRICTED