000860291 001__ 860291
000860291 005__ 20210130000504.0
000860291 0247_ $$2doi$$a10.1002/advs.201800855
000860291 0247_ $$2Handle$$a2128/21514
000860291 0247_ $$2pmid$$apmid:30581700
000860291 0247_ $$2WOS$$aWOS:000453685900026
000860291 0247_ $$2altmetric$$aaltmetric:54874920
000860291 037__ $$aFZJ-2019-01066
000860291 082__ $$a624
000860291 1001_ $$00000-0002-5925-8917$$aShen, Lvkang$$b0
000860291 245__ $$aA Strategy to Modulate the Bending Coupled Microwave Magnetism in Nanoscale Epitaxial Lithium Ferrite for Flexible Spintronic Devices
000860291 260__ $$aWeinheim$$bWiley-VCH$$c2018
000860291 3367_ $$2DRIVER$$aarticle
000860291 3367_ $$2DataCite$$aOutput Types/Journal article
000860291 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1548945814_28074
000860291 3367_ $$2BibTeX$$aARTICLE
000860291 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860291 3367_ $$00$$2EndNote$$aJournal Article
000860291 520__ $$aWith the development of flexible electronics, the mechanical flexibility of functional materials is becoming one of the most important factors that needs to be considered in materials selection. Recently, flexible epitaxial nanoscale magnetic materials have attracted increasing attention for flexible spintronics. However, the knowledge of the bending coupled dynamic magnetic properties is poor when integrating the materials in flexible devices, which calls for further quantitative analysis. Herein, a series of epitaxial LiFe5O8 (LFO) nanostructures are produced as research models, whose dynamic magnetic properties are characterized by ferromagnetic resonance (FMR) measurements. LFO films with different crystalline orientations are discussed to determine the influence from magnetocrystalline anisotropy. Moreover, LFO nanopillar arrays are grown on flexible substrates to reveal the contribution from the nanoscale morphology. It reveals that the bending tunability of the FMR spectra highly depends on the demagnetization field energy of the sample, which is decided by the magnetism and the shape factor in the nanostructure. Following this result, LFO film with high bending tunability of microwave magnetic properties, and LFO nanopillar arrays with stable properties under bending are obtained. This work shows guiding significances for the design of future flexible tunable/stable microwave magnetic devices.
000860291 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000860291 588__ $$aDataset connected to CrossRef
000860291 7001_ $$0P:(DE-HGF)0$$aLan, Guohua$$b1
000860291 7001_ $$0P:(DE-Juel1)161232$$aLu, Lu$$b2
000860291 7001_ $$0P:(DE-HGF)0$$aMa, Chunrui$$b3
000860291 7001_ $$0P:(DE-HGF)0$$aCao, Cuimei$$b4
000860291 7001_ $$0P:(DE-HGF)0$$aJiang, Changjun$$b5
000860291 7001_ $$0P:(DE-HGF)0$$aFu, Huarui$$b6
000860291 7001_ $$0P:(DE-HGF)0$$aYou, Caiyin$$b7
000860291 7001_ $$0P:(DE-HGF)0$$aLu, Xiaoli$$b8
000860291 7001_ $$0P:(DE-HGF)0$$aYang, Yaodong$$b9
000860291 7001_ $$0P:(DE-HGF)0$$aChen, Lang$$b10
000860291 7001_ $$00000-0002-4392-9659$$aLiu, Ming$$b11$$eCorresponding author
000860291 7001_ $$0P:(DE-Juel1)130736$$aJia, Chun-Lin$$b12
000860291 773__ $$0PERI:(DE-600)2808093-2$$a10.1002/advs.201800855$$gVol. 5, no. 12, p. 1800855 -$$n12$$p1800855 -$$tAdvanced science$$v5$$x2198-3844$$y2018
000860291 8564_ $$uhttps://juser.fz-juelich.de/record/860291/files/Shen_et_al-2018-Advanced_Science.pdf$$yOpenAccess
000860291 8564_ $$uhttps://juser.fz-juelich.de/record/860291/files/Shen_et_al-2018-Advanced_Science.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000860291 909CO $$ooai:juser.fz-juelich.de:860291$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000860291 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130736$$aForschungszentrum Jülich$$b12$$kFZJ
000860291 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000860291 9141_ $$y2018
000860291 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860291 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000860291 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV SCI : 2017
000860291 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bADV SCI : 2017
000860291 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000860291 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000860291 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860291 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860291 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000860291 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000860291 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860291 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860291 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000860291 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860291 920__ $$lyes
000860291 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000860291 980__ $$ajournal
000860291 980__ $$aVDB
000860291 980__ $$aUNRESTRICTED
000860291 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000860291 9801_ $$aFullTexts