000860292 001__ 860292
000860292 005__ 20210131030900.0
000860292 0247_ $$2doi$$a10.1002/adfm.201704455
000860292 0247_ $$2ISSN$$a1057-9257
000860292 0247_ $$2ISSN$$a1099-0712
000860292 0247_ $$2ISSN$$a1616-301X
000860292 0247_ $$2ISSN$$a1616-3028
000860292 0247_ $$2WOS$$aWOS:000423512300007
000860292 0247_ $$2altmetric$$aaltmetric:54874824
000860292 037__ $$aFZJ-2019-01067
000860292 082__ $$a530
000860292 1001_ $$0P:(DE-HGF)0$$aYang, Rui$$b0$$eCorresponding author
000860292 245__ $$aSynaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors
000860292 260__ $$aWeinheim$$bWiley-VCH$$c2018
000860292 3367_ $$2DRIVER$$aarticle
000860292 3367_ $$2DataCite$$aOutput Types/Journal article
000860292 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1548945923_28074
000860292 3367_ $$2BibTeX$$aARTICLE
000860292 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860292 3367_ $$00$$2EndNote$$aJournal Article
000860292 520__ $$aThe synaptic weight modification depends not only on interval of the pre‐/postspike pairs according to spike‐timing dependent plasticity (classical pair‐STDP), but also on the timing of the preceding spike (triplet‐STDP). Triplet‐STDP reflects the unavoidable interaction of spike pairs in natural spike trains through the short‐term suppression effect of preceding spikes. Second‐order memristors with one state variable possessing short‐term dynamics work in a way similar to the biological system. In this work, the suppression triplet‐STDP learning rule is faithfully demonstrated by experiments and simulations using second‐order memristors. Furthermore, a leaky‐integrate‐and‐fire (LIF) neuron is simulated using a circuit constructed with second‐order memristors. Taking the advantage of the LIF neuron, various neuromimetic dynamic processes, including local graded potential leaking out, postsynaptic impulse generation and backpropagation, and synaptic weight modification according to the suppression triplet‐STDP rule, are realized. The realized weight‐dependent pair‐ and triplet‐STDP rules are clearly in line with findings in biology. The physically realized triplet‐STDP rule is powerful in developing direction and speed selectivity for complex pattern recognition and tracking tasks. These scalable artificial synapses and neurons realized in second‐order memristors can intrinsically capture the neuromimetic dynamic processes; they are the promising building blocks for constructing brain‐inspired computation systems.
000860292 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000860292 588__ $$aDataset connected to CrossRef
000860292 7001_ $$0P:(DE-HGF)0$$aHuang, He-Ming$$b1
000860292 7001_ $$0P:(DE-HGF)0$$aHong, Qing-Hui$$b2
000860292 7001_ $$0P:(DE-HGF)0$$aYin, Xue-Bing$$b3
000860292 7001_ $$0P:(DE-HGF)0$$aTan, Zheng-Hua$$b4
000860292 7001_ $$0P:(DE-HGF)0$$aShi, Tuo$$b5
000860292 7001_ $$0P:(DE-HGF)0$$aZhou, Ya-Xiong$$b6
000860292 7001_ $$0P:(DE-HGF)0$$aMiao, Xiang-Shui$$b7
000860292 7001_ $$0P:(DE-HGF)0$$aWang, Xiao-Ping$$b8
000860292 7001_ $$0P:(DE-HGF)0$$aMi, Shao-Bo$$b9
000860292 7001_ $$0P:(DE-Juel1)130736$$aJia, Chun-Lin$$b10
000860292 7001_ $$0P:(DE-HGF)0$$aGuo, Xin$$b11
000860292 773__ $$0PERI:(DE-600)2039420-2$$a10.1002/adfm.201704455$$gVol. 28, no. 5, p. 1704455 -$$n5$$p1704455 -$$tAdvanced functional materials$$v28$$x1616-301X$$y2018
000860292 8564_ $$uhttps://juser.fz-juelich.de/record/860292/files/Yang_et_al-2018-Advanced_Functional_Materials.pdf$$yRestricted
000860292 8564_ $$uhttps://juser.fz-juelich.de/record/860292/files/Yang_et_al-2018-Advanced_Functional_Materials.pdf?subformat=pdfa$$xpdfa$$yRestricted
000860292 909CO $$ooai:juser.fz-juelich.de:860292$$pVDB
000860292 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130736$$aForschungszentrum Jülich$$b10$$kFZJ
000860292 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000860292 9141_ $$y2018
000860292 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860292 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV FUNCT MATER : 2017
000860292 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860292 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000860292 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860292 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860292 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860292 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860292 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860292 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860292 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860292 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000860292 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bADV FUNCT MATER : 2017
000860292 920__ $$lyes
000860292 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000860292 980__ $$ajournal
000860292 980__ $$aVDB
000860292 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000860292 980__ $$aUNRESTRICTED