001     860292
005     20210131030900.0
024 7 _ |a 10.1002/adfm.201704455
|2 doi
024 7 _ |a 1057-9257
|2 ISSN
024 7 _ |a 1099-0712
|2 ISSN
024 7 _ |a 1616-301X
|2 ISSN
024 7 _ |a 1616-3028
|2 ISSN
024 7 _ |a WOS:000423512300007
|2 WOS
024 7 _ |a altmetric:54874824
|2 altmetric
037 _ _ |a FZJ-2019-01067
082 _ _ |a 530
100 1 _ |a Yang, Rui
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Synaptic Suppression Triplet-STDP Learning Rule Realized in Second-Order Memristors
260 _ _ |a Weinheim
|c 2018
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1548945923_28074
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The synaptic weight modification depends not only on interval of the pre‐/postspike pairs according to spike‐timing dependent plasticity (classical pair‐STDP), but also on the timing of the preceding spike (triplet‐STDP). Triplet‐STDP reflects the unavoidable interaction of spike pairs in natural spike trains through the short‐term suppression effect of preceding spikes. Second‐order memristors with one state variable possessing short‐term dynamics work in a way similar to the biological system. In this work, the suppression triplet‐STDP learning rule is faithfully demonstrated by experiments and simulations using second‐order memristors. Furthermore, a leaky‐integrate‐and‐fire (LIF) neuron is simulated using a circuit constructed with second‐order memristors. Taking the advantage of the LIF neuron, various neuromimetic dynamic processes, including local graded potential leaking out, postsynaptic impulse generation and backpropagation, and synaptic weight modification according to the suppression triplet‐STDP rule, are realized. The realized weight‐dependent pair‐ and triplet‐STDP rules are clearly in line with findings in biology. The physically realized triplet‐STDP rule is powerful in developing direction and speed selectivity for complex pattern recognition and tracking tasks. These scalable artificial synapses and neurons realized in second‐order memristors can intrinsically capture the neuromimetic dynamic processes; they are the promising building blocks for constructing brain‐inspired computation systems.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Huang, He-Ming
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hong, Qing-Hui
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Yin, Xue-Bing
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Tan, Zheng-Hua
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Shi, Tuo
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Zhou, Ya-Xiong
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Miao, Xiang-Shui
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Wang, Xiao-Ping
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Mi, Shao-Bo
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Jia, Chun-Lin
|0 P:(DE-Juel1)130736
|b 10
700 1 _ |a Guo, Xin
|0 P:(DE-HGF)0
|b 11
773 _ _ |a 10.1002/adfm.201704455
|g Vol. 28, no. 5, p. 1704455 -
|0 PERI:(DE-600)2039420-2
|n 5
|p 1704455 -
|t Advanced functional materials
|v 28
|y 2018
|x 1616-301X
856 4 _ |u https://juser.fz-juelich.de/record/860292/files/Yang_et_al-2018-Advanced_Functional_Materials.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/860292/files/Yang_et_al-2018-Advanced_Functional_Materials.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:860292
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)130736
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV FUNCT MATER : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ADV FUNCT MATER : 2017
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21