000860295 001__ 860295
000860295 005__ 20220615154608.0
000860295 0247_ $$2doi$$a10.1039/C8NR01747F
000860295 0247_ $$2ISSN$$a2040-3364
000860295 0247_ $$2ISSN$$a2040-3372
000860295 0247_ $$2pmid$$apmid:29637969
000860295 0247_ $$2WOS$$aWOS:000431030000005
000860295 037__ $$aFZJ-2019-01070
000860295 082__ $$a600
000860295 1001_ $$0P:(DE-HGF)0$$aWang, Jiangjing$$b0
000860295 245__ $$aUnconventional two-dimensional germanium dichalcogenides
000860295 260__ $$aCambridge$$bRSC Publ.$$c2018
000860295 3367_ $$2DRIVER$$aarticle
000860295 3367_ $$2DataCite$$aOutput Types/Journal article
000860295 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1655300745_14568
000860295 3367_ $$2BibTeX$$aARTICLE
000860295 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860295 3367_ $$00$$2EndNote$$aJournal Article
000860295 520__ $$aThe recently discovered two-dimensional (2D) group IV chalcogenides attract much attention owing to their novel electronic and photonic properties. All the reported materials of this class favor (distorted) octahedral coordination via p bonding; by contrast, in the dichalcogenides where the bonding tendency approaches sp3, no corresponding 2D phase has been realized so far. Here, by engineering the composition of a chalcogenide heterostructure, the hitherto elusive GeTe2 is experimentally observed in a confined 2D environment. Density functional theory simulations predict the existence of a freestanding monolayer of octahedrally coordinated GeTe2 under tensile strain, and the existence of GeSe2 and GeS2 in the same form under equilibrium conditions. These 2D germanium dichalcogenides are either metallic or narrow gap semiconducting, and may lead to new applications in nanoscale electronics.
000860295 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000860295 536__ $$0G:(DE-Juel1)jara0150_20160501$$aAb initio study of interfacial phase-change materials and thin chalcogenides (jara0150_20160501)$$cjara0150_20160501$$fAb initio study of interfacial phase-change materials and thin chalcogenides$$x1
000860295 588__ $$aDataset connected to CrossRef
000860295 7001_ $$0P:(DE-HGF)0$$aRonneberger, Ider$$b1
000860295 7001_ $$0P:(DE-HGF)0$$aZhou, Ling$$b2
000860295 7001_ $$0P:(DE-Juel1)161232$$aLu, Lu$$b3
000860295 7001_ $$00000-0001-6873-0278$$aDeringer, Volker L.$$b4
000860295 7001_ $$0P:(DE-HGF)0$$aZhang, Baiyu$$b5
000860295 7001_ $$0P:(DE-HGF)0$$aTian, Lin$$b6
000860295 7001_ $$0P:(DE-Juel1)145710$$aDu, Hongchu$$b7
000860295 7001_ $$0P:(DE-Juel1)130736$$aJia, Chunlin$$b8
000860295 7001_ $$00000-0003-1627-288X$$aQian, Xiaofeng$$b9
000860295 7001_ $$0P:(DE-Juel1)176716$$aWuttig, Matthias$$b10$$ufzj
000860295 7001_ $$00000-0003-2319-375X$$aMazzarello, Riccardo$$b11
000860295 7001_ $$00000-0002-0720-4781$$aZhang, Wei$$b12$$eCorresponding author
000860295 773__ $$0PERI:(DE-600)2515664-0$$a10.1039/C8NR01747F$$gVol. 10, no. 16, p. 7363 - 7368$$n16$$p7363 - 7368$$tNanoscale$$v10$$x2040-3372$$y2018
000860295 8564_ $$uhttps://juser.fz-juelich.de/record/860295/files/c8nr01747f.pdf$$yRestricted
000860295 8564_ $$uhttps://juser.fz-juelich.de/record/860295/files/c8nr01747f.pdf?subformat=pdfa$$xpdfa$$yRestricted
000860295 909CO $$ooai:juser.fz-juelich.de:860295$$pVDB
000860295 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145710$$aForschungszentrum Jülich$$b7$$kFZJ
000860295 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130736$$aForschungszentrum Jülich$$b8$$kFZJ
000860295 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176716$$aForschungszentrum Jülich$$b10$$kFZJ
000860295 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000860295 9141_ $$y2018
000860295 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000860295 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOSCALE : 2017
000860295 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860295 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860295 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000860295 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860295 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860295 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860295 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860295 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860295 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNANOSCALE : 2017
000860295 920__ $$lyes
000860295 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000860295 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000860295 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000860295 980__ $$ajournal
000860295 980__ $$aVDB
000860295 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000860295 980__ $$aI:(DE-82)080012_20140620
000860295 980__ $$aI:(DE-82)080009_20140620
000860295 980__ $$aUNRESTRICTED