000860299 001__ 860299
000860299 005__ 20240610120456.0
000860299 0247_ $$2doi$$a10.1038/s41563-017-0010-4
000860299 0247_ $$2ISSN$$a1476-1122
000860299 0247_ $$2ISSN$$a1476-4660
000860299 0247_ $$2pmid$$apmid:29403052
000860299 0247_ $$2WOS$$aWOS:000426012000009
000860299 0247_ $$2altmetric$$aaltmetric:32699014
000860299 037__ $$aFZJ-2019-01074
000860299 082__ $$a610
000860299 1001_ $$00000-0002-0813-085X$$aWang, Zechao$$b0
000860299 245__ $$aAtomic scale imaging of magnetic circular dichroism by achromatic electron microscopy
000860299 260__ $$aBasingstoke$$bNature Publishing Group$$c2018
000860299 3367_ $$2DRIVER$$aarticle
000860299 3367_ $$2DataCite$$aOutput Types/Journal article
000860299 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1548947546_25674
000860299 3367_ $$2BibTeX$$aARTICLE
000860299 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860299 3367_ $$00$$2EndNote$$aJournal Article
000860299 520__ $$aIn order to obtain a fundamental understanding of the interplay between charge, spin, orbital and lattice degrees of freedom in magnetic materials and to predict and control their physical properties1,2,3, experimental techniques are required that are capable of accessing local magnetic information with atomic-scale spatial resolution. Here, we show that a combination of electron energy-loss magnetic chiral dichroism4 and chromatic-aberration-corrected transmission electron microscopy, which reduces the focal spread of inelastically scattered electrons by orders of magnitude when compared with the use of spherical aberration correction alone, can achieve atomic-scale imaging of magnetic circular dichroism and provide element-selective orbital and spin magnetic moments atomic plane by atomic plane. This unique capability, which we demonstrate for Sr2FeMoO6, opens the door to local atomic-level studies of spin configurations in a multitude of materials that exhibit different types of magnetic coupling, thereby contributing to a detailed understanding of the physical origins of magnetic properties of materials at the highest spatial resolution.
000860299 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000860299 588__ $$aDataset connected to CrossRef
000860299 7001_ $$0P:(DE-Juel1)157886$$aTavabi, Amir H.$$b1
000860299 7001_ $$0P:(DE-Juel1)145711$$aJin, Lei$$b2
000860299 7001_ $$00000-0002-0074-1349$$aRusz, Ján$$b3
000860299 7001_ $$0P:(DE-HGF)0$$aTyutyunnikov, Dmitry$$b4
000860299 7001_ $$0P:(DE-HGF)0$$aJiang, Hanbo$$b5
000860299 7001_ $$00000-0001-6584-7489$$aMoritomo, Yutaka$$b6
000860299 7001_ $$0P:(DE-Juel1)130824$$aMayer, Joachim$$b7
000860299 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b8
000860299 7001_ $$00000-0003-1687-3597$$aYu, Rong$$b9
000860299 7001_ $$00000-0002-2175-9476$$aZhu, Jing$$b10
000860299 7001_ $$0P:(DE-HGF)0$$aZhong, Xiaoyan$$b11$$eCorresponding author
000860299 773__ $$0PERI:(DE-600)2088679-2$$a10.1038/s41563-017-0010-4$$gVol. 17, no. 3, p. 221 - 225$$n3$$p221 - 225$$tNature materials$$v17$$x1476-4660$$y2018
000860299 8564_ $$uhttps://juser.fz-juelich.de/record/860299/files/s41563-017-0010-4-1.pdf$$yRestricted
000860299 8564_ $$uhttps://juser.fz-juelich.de/record/860299/files/s41563-017-0010-4-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000860299 909CO $$ooai:juser.fz-juelich.de:860299$$pVDB
000860299 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157886$$aForschungszentrum Jülich$$b1$$kFZJ
000860299 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145711$$aForschungszentrum Jülich$$b2$$kFZJ
000860299 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich$$b7$$kFZJ
000860299 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b8$$kFZJ
000860299 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000860299 9141_ $$y2018
000860299 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000860299 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860299 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT MATER : 2017
000860299 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860299 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000860299 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860299 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860299 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860299 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860299 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860299 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860299 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860299 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000860299 915__ $$0StatID:(DE-HGF)9930$$2StatID$$aIF >= 30$$bNAT MATER : 2017
000860299 920__ $$lyes
000860299 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000860299 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x1
000860299 980__ $$ajournal
000860299 980__ $$aVDB
000860299 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000860299 980__ $$aI:(DE-Juel1)PGI-5-20110106
000860299 980__ $$aUNRESTRICTED
000860299 981__ $$aI:(DE-Juel1)ER-C-1-20170209